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Jacek Blazewicz

Multi-agent based approach for the origins of life hypothesis

Abstract

Multi-agent systems have been used extensively in scheduling, but the methodology has
many other applications. One of those appears to be the analysis of the origins of life
hypothesis. One of the most recognized hypotheses for the origins of life is the RNA world
hypothesis. Laboratory experiments have been conducted to prove some assumptions of that
hypothesis. However, despite some successes in the "wet-lab" experiments, we are still far
from a complete explanation. Bioinformatics, supported by operations research and in
particular by multi-agent approach, appears to provide perfect tools to model and test various
scenarios of the origins of life where wet-lab experiments cannot reflect the true complexity
of the problem. This paper illustrates some recent advancements in that area and points out
possible directions for further research.
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Ender Ozcan

A Review of Selection Hyper-heuristics: Recent Advances

Abstract

Hyper-heuristics emerged as general purpose optimisation methodologies that search the
space of heuristics, rather than candidate solutions directly, for solving computationally
difficult problems. The current state-of-the-art in hyper-heuristic development involves
designing adaptive search methods that are applicable to instances with different
characteristics not only from a single problem domain, but also across multiple domains. A
key goal is enabling ‘plug-and-play’ search components, including data science techniques
(e.g., machine learning and statistics) to be applied to optimisation without them having to be
re-implemented for every problem domain. Selection hyper-heuristics separate the high level
automated search control embedding learning heuristic selection and move acceptance
methods from the low level problem domain details. In the last two decades, particularly after
the cross-domain heuristic search challenge in 2011, there has been an extremely rapid
growth in this area of research, leading to many highly-effective selection hyper-heuristics
applied to various problem domains. As a means of achieving generality, the initially
proposed interface between the selection hyper-heuristic and domain layers was extremely
restrictive allowing no problem specific information flow. However, there is a current trend
towards moving away from this type of interface to facilitate more expressive selection
hyper-heuristics capable of operating in an information rich environment, whilst still
maintaining domain independence of the search control. This talk provides a review of
selection hyper-heuristics focusing on the recent advances in the field.

-10 -
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Hoong Chuin Lau

Combining Machine Learning and Optimization for Real-World Scheduling Applications

Abstract

In this Big Data era, data can and should be exploited for more effective resource scheduling.
In this talk, I will discuss a framework that combines data analytics, machine learning and
optimization to solve real-world complex scheduling problems effectively. | will illustrate
with three diverse scheduling problems ranging from crowd logistics to police officer
scheduling to maritime traffic coordination, showing how spatial-temporal patterns can be
learnt from data (both historical and real-time), and utilized to generate effective schedules.

11 -
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MISTA 2017 |

Customer Order Scheduling on Unrelated Parallel
Machines to Minimize Total Weighted Completion Time

Haidong Li : Xiaoyun Xu - Yaping Zhao

Abstract This paper considers a customer order scheduling problem in unrelated
parallel machine environment. The objective is to minimize the total weighted com-
pletion time of orders. Several optimality properties of this problem are derived, and
a computable lower bound of the objective function is established. Due to the NP-
completeness of the problem, two heuristic algorithms are proposed. Theoretical analy-
sis shows that the worst-case performances of both algorithms are bounded. Numerical
studies are carried out to demonstrate the effectiveness of the lower bound and the
proposed heuristics.

1 Introduction

This paper considers a customer order scheduling problem on unrelated parallel ma-
chines to minimize total weighted completion time. To be specific, there are n order-
s J = {1,2,...,n} with each one consisting of various different product types T =
{1,2,...,t}. The workload of product type k in order j is p;;,Vj € J,Vk € T. The
release times of all orders are considered as 0 in this study, and order j has a positive
weight W;,Vj € J. Consider a facility with m unrelated machines M = {1,2,...,m}
in parallel. Each machine can produce all types of products, and the workload of each
product type can be split arbitrarily over all machines. The workload of each order can
be processed independently on each machine, and preemptions are allowed. Machine
processes product type k at speed v, Vi € M, Vk € T, which are predetermined and
heterogeneous across all the product type-machine pairs. The completion time of order
J, denoted as (7, is the time when all product types of order j have been finished. The

Haidong Li
Department of Industrial Engineering and Management, Peking University, Beijing, China
E-mail: haidong.li@pku.edu.cn

Xiaoyun Xu
Department of Industrial Engineering and Management, Peking University, Beijing, China
E-mail: xiaoyun.xu@pku.edu.cn

Yaping Zhao
Department of Industrial Engineering and Management, Peking University, Beijing, China
E-mail: yaping.zhao@pku.edu.cn
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objective is to schedule the orders on the machines so as to minimize total weighted
completion time ) W;C};. According to the notation system introduced in [3], this
problem is represented as Rm|O| Y W;C;, where “O” represents “order”.

In recent years, customer order scheduling problem has received an enormous
amount of attention in the literature. The concept of customer order scheduling is first
introduced by [7]. The authors consider a single machine problem with the objective
of minimizing the total completion time of orders, and provide a dynamic program-
ming algorithm for the problem with two product types and a given order processing
sequence. For single machine environment, variations of customer order scheduling
problems with different objectives have been well explored in the literature [10], [1],
[11], (4], [2], (12].

For parallel machine environment, Leung et al. [8] provide a thorough review on
customer order scheduling problem and classify the problem into three categories: 1)
the fully dedicated case, in which each machine can produce one and only one type
of product; 2) the fully flexible case, in which all the machines are identical and each
machine is capable of producing all the products; 3) the arbitrary case, in which all
the machines are unrelated and each machine is capable of producing all the products.
For dedicated parallel machine environment, there are several papers dealing with
customer order scheduling problem to minimize total weighted completion time. Sung
and Yoon [14] show that the problem of minimizing total weighted completion time
is NP-hard in the strong sense. They also show that the worst-case performance of
the weighted shortest processing time (WSPT) rule for permutation schedules is 2 for
the case of two machines. Wang and Cheng [15] establish three heuristics based on
WSPT rule and show that all of them have an m worst-case bound for the case of m
machines. Leung et al. [9] modify the SPTL and ECT heuristics by taking the weights
of orders into account and also provide the worst-case bound of these heuristics. For
unrelated parallel machine environment, much fewer related works have been found.
As concerns the unweighted cases, Yang [17] establishes the complexity of customer
order scheduling problem in the unrelated parallel machine environment. He prove
the NP-completeness of the problem with two machines to minimize total completion
time. Xu et al. [16] also consider the customer order scheduling problem to minimize
total completion time. They propose three heuristics and show that their worst-case
performances are bounded. To the knowledge of the authors, no additional result on
the problem in this paper has been reported in the literature.

This paper investigates the customer order scheduling problem on unrelated parallel
machines to minimize total weighted completion time of orders. In this study, the
scheduling problem is formulated as a Mixed Integer Programming (MIP). A non-
trivial lower bound on the objective is established, and two heuristic algorithms are
also proposed to solve this problem. The worst-case performance of each algorithm is
shown to be bounded. Numerical studies are conducted to demonstrate the performance
of the proposed heuristics under various application scenarios.

The remainder of this paper is organized as follows. Section 2.1 formulates the
problem Rm|O|)" W;C; as a Mixed Integer Programming (MIP). In Section 2.2, a
lower bound on the objective function is established. In Section 3, two heuristics are
proposed to solve the problem and their worst-case performance bounds are also con-
structed. Section 4 presents the numerical study and demonstrates the effectiveness of
the proposed heuristics. Concluding remarks are given in Section 5.

-14 -
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2 Theoretical Study
2.1 Mathematical Programme for Rm|O|Y W;C;

In this section, this paper formulates the problem Rm|O|Y W;C; as a mathematical
programme. To facilitate the formulation, two optimality properties of the studied
problem are presented first in the following two lemmas.

Lemma 1 For Rm|O|Y W;Cj, in any optimal schedule, all machines must complete
all workloads simultaneously.

Proof The proof is inspired by the optimality analysis in [16]. By contradiction. Sup-
pose that there exists an optimal schedule such that m machines do not complete all
workloads simultaneously, and order j is the order with maximum completion time. A
feasible schedule can always be constructed by assigning part of the workload of order
j on the latest finishing machine to other machines so that the completion time of
order j is not increasing. Repeating this procedure till a better schedule is constructed
where all m machines complete all workloads simultaneously. A contradiction. ]

Lemma 2 For Rm|O|Y_ W;C;, there exists an optimal schedule in which all machines
process the customer orders in the same sequence and without preemptions.

Proof By contradiction. Suppose that there exists no optimal schedule such that all
machines process the customer orders in the same sequence and without preemptions.
Let machine ¢ be the latest finishing machine in one optimal schedule 7Pt e, all
other machines finish at the same time as or earlier than machine 7. Let order j be the
order that finishes last on machine i. For each machine, move all workloads of order j
to finish last. This operation will not change the completion time of order j. However,
each of the order [ # j finishes at the same time as or earlier than before. Then, delete
the last order and consider only the first (n — 1) orders.

By repeating the above operation, a new schedule 7* is then constructed with the
9Pt and all machines in 7* process the customer
orders in the same sequence and without preemptions. A contradiction. O

objective function no worse than m

To obtain the optimal schedule described in Lemma 2, three sets of decision vari-
ables are defined: (i) x;; for 4,j € J: a binary variable that takes a value of 1 if order 4
is processed before order j and takes a value of 0 otherwise; (ii) s, for j € J,m € M:
a variable that represents the starting time of order j on machine m; (iii) ¥y, for
m € M,t € T,j € J: a variable that represents the portion of type ¢t in order j pro-
cessed by machine m. In terms of these variables, a Mixed Integer Programming (MIP)
formulation of the problem is established as follows.

-15-
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(MIP) min » W;C;
j

st. xi +xy=1,Vi #jel; (1)
Zymtj:17VteT7vj€J; (2)
m

Sim + M x (1 —x45) = sim + Zymti X Pit/Vmt,
7
Vm € M, Vi # j € J; 3)

Sim + M X x5 = Sjm + Zymtj X Pjt/Vmt,
t
Vm e M,Vi#jeJ; (4)

Cj 2 Sjm +Zymtj X pjt/vmt,
t
Ym € M, Vj € J; (5)
Tij € {0, 1},Vi #jel;
sjm 2 0,Vj € J,Vm € M

=
>0,¥m € M,Vt € T,Vj € J.

Ymtj

Constraints (1) mean that one order is processed either before or after another or-
der; Constraints (2) ensure the completion of the workload of each order; Constraints
(3) and (4) are a pair of dual constraints to define the start time of each order; Con-
straints (5) define the orders’ completion times.

As an immediate extension of the complexity results in [17], the Rm|O|Y " W;C;
problem is NP-complete. For small scale problem instances, solving the proposed MIP
by optimization softwares such as CPLEX can yield optimal solutions in reasonable
time. However, when the size of the problem becomes large, it is still difficult and
time-consuming to obtain the optimal solution.

2.2 Lower Bound of Rm|O| % W;C;

Due to the NP-completeness of the problem Rm|O|>" W;C}, optimal schedules and
their optimal objective function values cannot be obtained in reasonable time for large
scale problem instances. In order to evaluate the performances of feasible schedules, it
is reasonable to establish a lower bound on the objective function as comparison.

To derive the lower bound, several additional notations are introduced first. Let
Rm|O|Cmax denote the problem which has the same machine environment with Rm|O| Y W;C;
but aims to minimize the completion time of the last finishing order, denoted as Cmax;
solve Rm|O|Cmax for each individual order j € J, then CY ax denotes the minimum

]

makespan of order j; sort Cﬂlax’s in a nondecreasing order, then Cr[rjlax denotes the
Jj-th one in the sequence; solve Rm|O|Cmax for all n orders, then C’gax denotes the
minimum makespan of n orders.

In addition, let m denote a feasible schedule; Cj(m) and W;(w) denote the com-
pletion time and the weight value of the j-th order in schedule 7, respectively; sort
W;(m)’s in a nondecreasing order, then WUl denotes the 7-th one in the sequence. With
the above notations and definitions, consider the following two lemmas.
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Lemma 3 For any optimal schedule 7°Pt of Rm|O| > W;Cj, the following two in-
equalities must hold:

n
Cnj(m) > Cu(x?) = Y Ol

k=n—j+1
Vie{1,2,...,n—1}; (6)
Cj(ﬂ'opt) > C’I[I{]ax,Vj e{1,2,...,n}. (7)
Proof The detailed proof can be referred to Theorem 2 and Theorem 3 in [16]. O

Lemma 4 (Rearrangement Inequality from [5]) Suppose that x1 < z2 < ... <
Tn, Y1 LY2 < ... < yn and 21,22, . ..,2n 1S any rearrangement of y1,y2,...,yn. Then

T1Yn + T2Yn—1 + ... +Tny1 121 + X222 + ... +Tnzn

<
< z1y1 +Toy2 + -+ Tnyn.

According to Lemma 3 and Lemma 4, a lower bound of the optimal objective
function value is shown in the following theorem.

Theorem 1 Problem Rm|O|" W;C; has the following lower bound

n—1 n
LB = wh It xmax{ Qi — Y Clike, CRh b + WCT,
j=1 k=j+1
< OBJ(nPY),

where OBJ(w°Pt) = E?Zl W (mPt)C (nP").

Proof Tt is obvious that for any optimal schedule 7°Pt, Cy, (7°P%) > CQ,«. Therefore,
according to Lemma 3, it can be obtained that

n—1 n
OBJ(x") > 3" W;(x') x max{ CQux — > Clihx, Clihx b+ Wi (7" O
j=1 k=j+1

Let a; = max {Cfgax—z’,j:jﬂ C%£X7CQLX}7VJ' € {1,2,...,n—1} and an =

C9,«. It will be shown through Case #1 to Case #3 that the sequence {aj}j=1 is
nondecreasing.
Case #1: Suppose that

n
k i .
Cr(rzax - Z CI[‘ﬂ]a.X 2 Cl[lgl]ax7v] S {17 27 e, — 1}
k=j+1
Then

n
k .
a; :Cgax— Z CLleVJ e{1,2,...,n—1}.
k=j+1

It is obvious that the sequence {a; }?;11 is nondecreasing.
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Case #2: Suppose that

n
COmx— > Ol <cllvie {2, ,n—1}.
k=j+1

Then )
a; =Cll Vi€ {1,2,... ,n—1}.

It is obvious that the sequence {a; };:11 is nondecreasing.
Case #3: There exists an adjacent number pair (7,7 + 1) such that

n
Ogax - Z Clr]ﬂxx < Ckl]ax

k=141
and "
k 1
Cr(rylax - Z Or[n]a Cr[ézx]
k=i+2
Then,
n n
k O k
3 ol < C8u < > Ol
k=i+1 k=i
Thus, for j € {1,2,...,i}, aj = C’HLm and the sequence {aj}é-:l is nondecreasing; for

je{i+1,i+2,...,n—1}, a5 = CQox — ZZ:j-i-l Cr[ﬂlx, and the sequence {aj}?:_il_,’_l

is nondecreasing. Moreover, it is obvious that

n
3 i+1 O k
a; = CI['Ill]aX < Ckl-aiu_x] < Crnax - E CI[Il']a.X = Aj41-
k=i+2

Therefore, the sequence {a; }?;11 is nondecreasing.

Concluded from the discussion of the above three cases, the sequence {aj};:ll is
nondecreasing. In addition, it is trivial to show that

an = Cr(rylax Z max {Cgax - Cr[r?ix: Cr[;le;cl]} =an—1-

no - .
Therefore, the sequence {a; }j:1 is nondecreasing.

Replacing x; and y; in Lemma 4 with wlil and aj, respectively, Lemma 4 suggests
that

n n
3 > YW
j=1 j=1
Therefore,
n n .
OBJ(x") = Y Wi(xa; > Y winItla; = LB,
j=1 j=1

0O

The tightness of the above lower bound is of great concern in both theoretical and
computational studies. In order to demonstrate the tightness of LB, in the following
corollary, it is shown that LB equals global optimum under certain mild conditions.
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Corollary 1 When the machine environment is identical (Pm) or uniform (Qm),
LB = OBJ(7°"") if (Chax — Chhax) (Wi — W;) < 0,¥i,j € J.

Proof The proof is an immediate consequence of Theorem 1 and thus omitted for
brevity. ]

3 Heuristics for Rm|O| Y W;C;

For small scale problem instances, solving the MIP in Section 2.1 can yield the optimal
solution in reasonable time. When the size of the problem becomes large, obtaining the
optimal solution could be very time-consuming. As alternative methods, two heuristics
for Rm|O|Y_ W;C; are proposed to solve the problem. The designs of both heuristics
are based on insights from the optimality properties shown in the previous section, and
both of them can be implemented quite easily.

3.1 Heuristic H1

The first heuristic, named H1, is a constructive method. The design of this heuristic
is inspired by Corollary 1. To be specific, in order to solve the studied problem with
a total of n orders, heuristic H1 first proceeds by solving n subproblems individual-
ly, each with a single order. In each subproblem, H1 minimizes the completion time
of that particular order, that is, solves Rm|O|Cmax with a single order. It is trivial
to show that the starting and ending times on all machines are identical in each of
n subproblems, resulting in forming n individual “processing blocks”. These block-
s are then reassembled together according to the Weighted-Shortest-Processing-Time
(WSPT) rule as if they were individual jobs. Formally, heuristic H1 is described as
follows.

1. Solve subproblem Rm|O|Cmax optimally for each single order j individually. Obtain
gub7s and their corresponding Clax, Vj € J. Here ﬂ-gub is the processing block of
order j with identical starting and finishing time on all machines. )

2. Sort n orders according to the WSPT rule based on values of weight W; and Cliax.
3. Construct a nondelayed feasible schedule 7 by combining all processing blocks

7! . ,¥j € J in the WSPT sequence.

sub?

™

It is clear that heuristic H1 is optimal when the parallel machine environment
is identical (Pm) or uniform (@Qm). For the arbitrary case where all machines are
unrelated (Rm), heuristic H1 has the following worst-case performance bound:

Theorem 2 For Rm|O|Y W;C;, the worst-case performance bound for heuristic H1
18

0BJ("M) _ (i1 iW) x (5, cil)
OBJ(mort) S Z?:l W[n7j+1]c’r[g]ax

where OBJ(ﬂ'Hl) denotes the objective function value of H1.

Proof See Appendix. a
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3.2 Heuristic H2

The design of H2 is inspired by two observations. First, to reduce the completion time
of each order, it is generally preferable to assign each product type on the machine
which processes it at the fastest rate. Second, from Lemma 1, it seems reasonable to
evenly distribute the workloads so that no machine is dominantly busy.

Specifically, heuristic H2 starts by arranging orders according to a non-increasing
order of weights W;,Vj € J. Then, H2 proceeds by calculating the machine efficiency
for each product type. The efficiency factor, en¢, is defined as the ratio of the speed
of processing type t on machine m to the maximum speed of processing type ¢ on all
machines. A list of product types in a non-increasing order of ey, is created for each
machine. The workload allocation of each order is determined as follows. Initially all
the product types are “unassigned”. Once a product type is allocated to a machine,
it will be labeled as “assigned”. Every time, pick the machine with minimum current
completion time and assign it with the next “unassigned” product type in its list. The
process continues until all product types in one order have been assigned. Then, reset
all the product types and repeat the above steps to assign the next order. Detailed
description of heuristic H2 is listed in the following.

Heuristic H2
Input: V = [vmt|mxt, P/ = [p;-t]nxt where pg.t denotes the workload of type t of the
order with weight W[n—i+1l,
set ym¢; = 0 for every m, t and j;

for every machine m do
create a list of all product types in non-increasing order of e+, where

emt = vmt/(;nnggcﬂ{vmt});

set 0 to Cy,, the completion time of product types currently assigned to machine m;
end
set j = 1;
while j < n do
label all product types as “unassigned”;
while not all product types are assigned do
find machine m such that C}, is minimal among all machines;
find the next “unassigned” type t on the list of machine m;
if such t exists then
set 1 to ymt;, label product type t as “assigned”;
update Ch, by setting Cp, = Cp, +p;t/vmt;
else

end
end
update j by setting j = j + 1;
end
return Y72 = [Ymtjlmxtxn

Heuristic H2 is a greedy algorithm. At each iteration, it assigns workload to the
earliest finishing machine. Therefore, in the long run, this greedy algorithm maintains
the balance of workloads and prevents the occurrence of excessive long processing time
on a certain machine.

However, unlike H1 where the workloads of all product types are distributed among
multiple machines, H2 does not allow workload splitting, that is, the entire workload
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of each product type will be processed by one machine only. The “non-splitting work-
load” feature in heuristic H2 is very desirable in many manufacturing practices. For
example, in textile industry where products are not allowed to be separated, heuristic
H?2 becomes the only heuristic proposed in this study that is feasible to apply.

Although no workload splitting is allowed in H2, the performance of heuristic H2
is still bounded, as shown by the following theorem.

Theorem 3 For Rm|O|> W;C}, the worst-case performance bound for heuristic H2
8

§—1 pmax
OBJ(ﬂ'H2) - Z?:l Wj(ﬂ'HQ) ~ [(% _|_ija>c]
OBJ(ropt) S LB ’

where OBJ(ﬂ'HQ) denotes the objective function value of H2, LB 1is obtained from
Theorem 1 and ijax is the sum of the largest processing time of each product type in
the j-th order.

Proof See Appendix. a

4 Computational Experiment
4.1 Experiment Design

This experimental study aims to examine the quality of the lower bound as well as the
performance of the two proposed heuristics. The scale of testing instances generated
in this computational study is listed as follows:

— Number of machines m = 5, 20.
— Number of orders n = 5,10, 50.
— Number of product types t = 50, 100.

To simulate the unrelated machine environment, all the machines can process any
product type and speed v;;’s are randomly generated from the uniform distribution
[40, 60]. Furthermore, order weight W;’s are randomly generated from the normal
distribution N(x = 5,0 = 1) and take the absolute values.

To evaluate the impact of workload variability on the heuristic performances, the
following two scenarios are considered:

— Relatively Uniform Workload (RUW): The workload of each product type in
every order is randomly generated from the uniform distribution U[400, 600]. The
coefficient of variation (CV, the standard deviation divided by the mean) equals
approximately 0.1 under such circumstances, and this setting represents the case
when workloads of all orders are relatively uniform.

— Highly Variant Workload (HVW): The workload of each product type in every
order is randomly generated from the uniform distribution U[1,1000]. CV under
such circumstances equals approximately 0.6, which, as stated in [6], indicates that
there exists high variability in workloads. This setting represents the cases when
workloads are highly variant among different orders.

There are |m|x |n| X |t| = 2x 3 x 2 = 12 cases tested under each of the two scenarios
listed above, and 5 independent replicates are randomly generated for each individual
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case. Therefore, a total of 2 X 3 X 2 x 2 X 5 = 120 replicates need to be constructed in
the entire computational experiment.

The performance of the proposed heuristic algorithms is evaluated using the fol-
lowing two criteria:

-Performance gap

Since the problem Rm|O|Y" W;C; is NP-complete, it could be computationally
challenging to obtain the optimal solution for large scale problem instances. However,
since the calculation of the proposed LB mainly requires solving a linear programming,
LB can be obtained within polynomial time and used to evaluate the performance of
each heuristic algorithm. Therefore, the heuristic performance is gauged with reference
to the lower bound as follows:

OBJ(r") -~ LB

Performance Gap (%) = — I x 100%,

where OBJ(ﬂ'H) denotes the objective function value of heuristic.

-Computational Time

The running time of heuristic is recorded in CPU seconds (sec) to measure compu-
tational efficiency.

The simulation is coded using Matlab, and runs on a desktop computer with
3.40GHz CPU and 8G memory.

4.2 Experiment Results and Analysis

4.2.1 Analysis of Lower Bound Performance

As lower bound is involved in the calculation of performance gaps of heuristics, in
order to provide convincing perspective, it is helpful to elaborate the efficiency of the

proposed lower bound. The efficiency is measured by the gap between lower bound and
optimal solution, which is shown in Table 1.

Table 1 The performance gap of the lower bound

Problem Setting Reference Gap (%)
RUW HVW

t m n Mean Max Mean  Max
5 5 5 OPT 2.11 4.61 6.69 8.48
10 OPT 2.23 3.89 5.57 6.11
10 5 OPT 1.34 1.99 6.01 9.74
10 OPT 2.28 3.41 9.39 10.17
20 5 5 OPT 0.65 1.34 4.52 6.49
10 OPT 1.71 2.20 3.72 5.03
10 5 OPT 0.58 0.81 1.83 2.84
10 OPT 0.73 1.12 5.12 7.53

It is straightforward to conclude from Table 1 that the proposed lower bound
is highly efficient in all testing instances, especially in cases with relatively uniform
workload, where all mean gaps are bounded in 2.3%. Even in cases with highly variant
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workload, the mean gaps are still bounded in 10%. This phenomenon also demonstrates
the slight influence that workload variance causes on lower bound performance.

Problem scale can also affect the efficiency of the lower bound. Given that the
numbers of machines (m) and orders (n) are fixed, the mean gaps decrease as the
number of product types (t) grows under all the testing scenarios. For example, for the
case m = 5,n = 5 with relatively uniform workload, the mean gap plunges from around
2.11% to no more than 0.65%, when the product type number (¢) increases from 5 to
20. This phenomenon can be heuristically interpreted as the “balance effect” of product
types, which means a large number of product types will erode the heterogeneity of
machines. This characteristic inspires more confidence in taking the lower bound as
reference to evaluate the two heuristics when the target problem involves a large number
of product types.

The maximum gaps shown in Table 1 provide an additional insight. In each problem
scale, consider the 5 replications of every testing scenario as a group. It can be observed
that the absolute difference between the mean and maximum gaps is bounded in 3.73%.
This observation suggests the performance of the lower bound is stable within group.
Furthermore, under the same problem scale, the absolute difference between the mean
and maximum gaps has no significant variance across two different scenarios (RUW
and HVW). This shows that the performance of the proposed lower bound is robust
over all scenarios considered.

4.2.2 Analysis of Heuristic Performance

The efficiency of heuristic is measured by both of the performance gap with lower
bound and the computational time. The proposed heuristics are investigated in 2 testing
scenarios under 12 problem settings. Results of two scenarios are reported in Table 2
and Table 3, respectively. The best dispatching method between heuristics H1 and H2
has also been demonstrated in column “min{H1, H2}” of Table 2 and Table 3.

Table 2 The performances of two algorithms under scenario RUW

Problem Setting Performance Gap (%) Computational Time (sec)
1 2 min{ H1, H2} o1 2
t m n Mean Max Mean  Max Mean Max Mean Mean
50 5 5 0.39 1.02 3.08 3.83 0.39 1.02 1.25 0.01
10 0.81 1.17 2.69 3.63 0.81 1.17 2.92 0.01
50 1.17 1.79 1.89 2.25 1.15 1.70 11.63 0.03
20 5 0.39 0.67 11.12  13.41 0.39 0.67 1.29 0.02
10 0.68 1.22 7.99 9.36 0.68 1.22 3.44 0.02
50 0.92 1.14 3.22 3.65 0.92 1.14 15.82 0.11
100 5 5 0.55 1.31 2.16 2.65 0.55 1.31 1.26 0.01
10 0.46 0.86 1.59 2.24 0.46 0.86 3.51 0.01
50 0.75 0.91 1.38 1.63 0.75 0.91 18.39 0.06
20 5 0.43 0.81 6.77 7.89 0.43 0.81 1.88 0.02
10 0.53 0.95 4.16 4.46 0.53 0.95 5.02 0.04
50 0.67 0.70 2.11 2.33 0.67 0.70 20.89 0.20

As can be observed in Table 2 and Table 3, heuristic H1 outperforms H2 in terms
of the mean gap in all testing cases. For the cases with relatively uniform workload
(RUW), heuristic H1 provides solutions with no more than 1% performance gaps for
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Table 3 The performances of two algorithms under scenario HVW

Problem Setting Performance Gap (%) Computational Time (sec)

H1 H?2 min{H1, H2} H1 H2
t m n Mean Max Mean  Max Mean Max Mean Mean
50 5 5 1.61 5.21 6.20 10.76 1.61 5.21 1.32 0.01
10 3.73 6.66 6.99 10.62 3.73 6.66 2.95 0.01

50 3.82 5.28 5.94 7.37 3.82 5.28 11.74 0.03

20 5 2.79 4.79 24.14  27.13 2.79 4.79 1.32 0.01

10 4.46 5.42 16.56  19.52 4.46 5.42 3.46 0.02

50 4.48 5.25 9.06 9.65 4.48 5.25 16.01 0.11

100 5 5 1.74 3.21 3.85 5.76 1.74 3.21 1.26 0.01
10 2.35 3.74 4.07 5.90 2.35 3.74 3.57 0.01

50 3.13 3.59 4.44 4.71 3.13 3.59 18.42 0.06

20 5 1.88 3.51 12.12  14.61 1.88 3.51 1.94 0.02

10 2.41 3.34 8.60 9.66 2.41 3.34 5.15 0.04

50 3.22 4.15 5.50 6.36 3.22 4.15 30.13 0.21

nearly all cases. For the cases with highly variant workload (HVW), heuristic H1 is also
capable of delivering solutions with mean performance gaps that are less than 4.5%
compared with the lower bound. On the other hand, however, heuristic H1 can be
challenged when it comes to computational efficiency. For solving the same problem,
the computational time required by H1 is approximately 100 times more than that
of H2. The reason lies in the fact that heuristic H1 needs to solve n subproblems
Rm|O|Cmax, which is equivalent to solving a linear programming.

Heuristic H2 has been shown to be less efficient than H1 in terms of mean perfor-
mance gap. However, mean gaps of no more than 10% are also observed in nearly all
the testing cases of relatively uniform workload setting. Even in the cases with highly
variant workload, the mean gaps of heuristic H2 are still be bounded in 25%. It is
worth noting that H2 is the only proposed heuristic that does not require workload
split. In some applications where significant setup time is incurred between type switch
(such as die change or paint switch), H2 may become a better alternative between the
two proposed heuristics.

The efficiency of heuristic is also affected by the problem scale. The mean gaps of
all the proposed heuristics tend to decrease as the number of product type (¢) grows. It
accounts for the fact that the lower bound can provide a better approximation to the
optimal value when product type number becomes large. Another contributing factor
to this phenomenon is that large product type number dilutes the impact of the order
differences and therefore provides a slight remedy for undesirable variability in machine
capability.

The maximum gaps demonstrated in Table 2 and Table 3 provide an additional
insight into the stability and robustness of proposed heuristics. It can be observed that,
within each testing group (5 replications of the same problem scale and scenario), the
maximum gap does not drift too far from the mean gap. This finding confirms the
stability of intra-group performance gaps provided by all proposed heuristics. Moreover,
under the same testing scenario, the relative differences between the maximum and
mean gaps do not vary too much across all problem scales tested. It can therefore be
concluded that all proposed heuristics are robust over all scenarios and problem scales
considered.
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5 Conclusion

This study addresses a customer order scheduling problem in unrelated parallel machine
environment. The objective is to minimize the total weighted completion time of all
customer orders. In this study, several important optimality properties of the studied
problem have been derived. Based on these properties, a computable lower bound of
the objective function has been established. Numerical studies suggest that this lower
bound provides a good approximation to the optimal value and performs even better
as the number of product types grows.

Two heuristics are also proposed to solve the customer order scheduling problem.
Numerical studies provide additional insights into the heuristic performance under
various scenarios and problem settings. Both heuristic H1 and H2 can be implemented
quite easily. Heuristic H1 behaves quite well and outperforms heuristic H2 in terms of
the performance gap in most cases. Heuristic H2 shows its advantage in applications
where significant penalty is incurred between type switch. In addition, the performance
of both heuristics improves as the number of product type grows.

Further research on this topic may involve some other important criteria to evaluate
the quick responsiveness of industries. Another possible generalization, which is of
interest during recent years, would be taking setup time between product type exchange
and resource constraints into consideration. The problem considered in this study can
also be extended to more complex production environments, such as flow-shop, job-
shop and so forth.

6 APPENDIX
6.1 Proof of Theorem 2
Proof 1t is obvious that

n
max{cgax - Z Cr[r]ﬂnu Cr[gl]ax} = Cr[gl]axv
k=j+1

vje{1,2,...,n—1}, and COux > C,[,?;X. Thus, a lower bound for LB can be obtained
that

LB >

J

n
wir el (8)
=1
Consider the 1|| Y~ W;C; problem where the job size p; = C’,[ﬂ]amj e{1,2,...,n}.
It is known from [13] that applying the WSPT rule can obtain the optimal solution

to 1|| > W;C; problem. Therefore, among all possible sequences of p; = C’I[f;]ax,j €
{1,2,...,n}, the summation of weighted completion time of the sequence according to
WSPT rule is minimum.
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Consider the following n sequences of CHLX’SI

Sequence#1 : C’I[Ill]ax — Cr[fl]ax — . Cr[;l;(” — C’I[ﬂx;

Sequence#2 : C’,[ﬂix — CE{LX — - Clgix — C]Lll]dx;

Sequence#n : C’I[ﬂx — Cr[rll]ax — = CI[Q;CQ] — C’I[I?;Xl].

Let VU] denote the weight value corresponding to the job size p; = Cr[f;]ax. Con-

sider the summation of weighted completion time of the Sequence #1, the WSPT rule
guarantees that:

OBJ i X ch[;l]dx
Jj=1 =1

From Lemma 4, an upper bound for the summation of weighted completion time
of the Sequence #1 can be obtained as:

n

n j J
Z(V[j] % ZOI['I?;]]B-X) < Z(WU] X Zcx[ari]ax)-
j=1 i=1 i=1

i=1
Therefore,

OB.J(r i x i Chl)-

<.
—

In order to express other sequences expediently, it is necessary to extend the defi-
nition of Clé]ax such that

Clé]&x:Clé&f7Vz€{n+l n+2,...,n+n—1}

In the same way, n inequalities can be obtained:

n J
OBJ(x") < YW x 3 cfl;
=1

j=1
n ) Jj+1 )
OBJ(ﬂ'Hl) < Z(W[J] X ZOI[IZI]aX)a
j=1 i=2

n ) Jj+n—1 )
oBITHY < wl xSl
j=1 —

Summing the above inequalities, one can obtain that:

n

n
nx 0BJ(x") < (3wl x (37 el
Jj=1

j=1
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Therefore,
OBJ(x ) <~ (3 73wV x (3~ Critaw).
j=1 j=1
The worst-case performance bound for heuristic H1 can be obtained that
0By _ (Cj1 W) x (], Ciinx)
OBJ(wort) = nx LB

0wl < (07 el
nx Y1 Wit

6.2 Proof of Theorem 3

Proof Let C;— denote the completion time of the first j orders on machine 7. Moreover,
let ) ‘
MM =min{C%},5 € {1,2,...,n}.
T = min{C1},5 € { )

The following proof proceeds in two steps.
First, it is shown that
Ci(n™?) <O+ T j € {1,2,...,n).

According to heuristic H2, the starting time of the j-th order equals to ;n_”f
Suppose the machine ¢* is the one with minimum completion time of the first (j — 1)
orders. Machine i; is one of machines assigned with at least one type of the j-th order.
In Figure 1, time spot A is the completion time of the first j orders on machine i*.
Time spot Bj is the completion time of the first (j — 1) orders on machine i;. Then,

The campletion tine of the first (j-1) orders ] The procassing tim of the J-th order

Fig. 1 Heuristic H2

time spot A must be later than time spot Bj. If not, machine i; is assigned with one
type of the j-th order for the first time, but at this time, current completion time of
machine 71 is greater than that of machine i*. A contradiction.

Let M’ denote the set of all machines assigned with at least one type of the j-
th order. Let T;k denote the processing time of the entire type k in the j-th order
processed by machine ¢ and ﬁ;ax = %ﬁ({T;k} Replace each T;MW e M,k € T with

corresponding ﬁ;ax (Figure 2). Then, remove the new processing time of the j-th

order on machine i1,Vi; € M’ to machine i* (Figure 3). Since time spot A is later
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Machine i*

NN ]
\\\\\\\\\\‘\-- P

7

Tho o
[

Fig. 2 Replace each T;k with corresponding T2

Fig. 3 Remove the new processing time of the j-th order

than time spot Bi, it is trivial to show that the new completion time of the first j
orders on machine ¢* is greater than C’;HVil € M. Since Cj(ﬂ'H2) = mg,ﬂ}f{C;}, the
1€

new completion time of the first j orders on machine ¢* is greater than C; (7rH 2).
Therefore,

Cj( mln a4 Z T]n];ax
= Om”f +T““ax je{1,2,...,n}.
Second, it is shown that

J
;M < % Z T 5 € {1,2,...,n}.
k=1

Since C;-nin = min{C’;}, it is obvious that
1€EM

m
mx O < }: ci.
Moreover,

j t
i O;: < i Z Tmax Z Tmax.
i=1

n=1k=1 k=1

Therefore,

J
mln 1 max
<=>7 1,2,. .
m 2 J €4 ;n}

-28 -



8th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2017)
5-8 December 2017, Kuala Lumpur, Malaysia

From the above two steps, one can obtain the following upper bound for C; (7rH2):

Jj—1

H2 1 ‘
Ci(™) < (D T + T j € (1,2, n}.
k=1
Therefore,
n 1 Jj—1
OBJ(x"?) <> w;(x?) x (— DT+ T,

j=1 k=1
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Exploration of Logic-Based Benders Decomposition Approach for
Mapping Applications on Heterogeneous Multi-Core Platforms

Andreas Emeretlis « George Theodoridis * Panayiotis Alefragis * Nikolaos Voros

Abstract The proper mapping of an application on a multi-core platform and the scheduling of
its tasks is a key element to achieve the maximum performance. To obtain optimal mapping
solutions, the logic-based Benders decomposition principle is employed for applications
described by Directed Acyclic Graphs (DAGs). The approach combines integer linear
programming (ILP) and constraint programming (CP) for the assignment of the tasks to the cores
of the platform and their scheduling per core, respectively. Its performance mainly relies on
enriching the assignment sub-problem with parts of the scheduling problem in order to identify
infeasible solutions. The purpose of this work is to study and experimentally evaluate through
computational results the effect of different aspects of the method to its overall performance in
terms of solution time. The introduced approach is compared with a pure ILP model achieving
speedups of orders of magnitude. In addition, it is employed as a cut generation scheme for the
pure ILP model in a hybrid solution method. The latter optimally solves problems that cannot
be solved by any of the integrated methods alone, while the overall solution time is also
decreased.
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1 Introduction

The mapping of an application on a multi-core platform refers to finding an assignment of its
tasks to the cores of the platform and their scheduling per core in order to optimize one or more
metrics, such as performance, power dissipation, and system cost. In its general form, this is a
well-known NP-complete problem. Moreover, the design of modern multi-core systems leans
towards the use of heterogeneous cores, whose features can be exploited to satisfy the diverse
functionality of the applications. However, when the platform consists of heterogeneous cores,
the complexity of the problem increases since the execution time of each task is not the same for
all cores.

In the case of multi-core computing, the applications can be considered as a set of many
tasks that need to be distributed on multiple cores and can be represented as a Directed Acyclic
Graph (DAG). The nodes of the DAG correspond to the tasks and the edges represent data
dependencies between them. When the mapping is static, that is the application’s characteristics
are known in advance and the DAG does not change during its execution, reasonable design
effort and time can be spent to obtain an optimal or near-optimal solution. Moreover, in the
context of auto parallelization when high level description languages are used as input,
intermediate representations generate extremely complex DAGs that need to be mapped and
scheduled in heterogeneous architectures[1][2].

The above problem has been studied extensively in the past [3] and a detailed survey is
provided in [4]. Due to its increased complexity, the vast majority of the adopted methods that
target the mapping problem are based on heuristic approaches, such as list scheduling [5, 6], or
stochastic search algorithms, such as genetic algorithms [7]. These methods have low
computational complexity and are able to produce a good solution in reduced time, without
guaranteeing that it is the optimal one.

On the other hand, methods that always produce an optimal solution are based on Integer
Linear Programming (ILP) [8, 9] or Constraint Programming (CP) models [10, 11]. These
methods always provide an optimal solution, but they suffer from large computational
complexity; thus their solution time may be prohibitive even for relatively small-scale problems.
In this direction, some approaches have been proposed trying to speed up the solution process
of the above methods.

One approach that has been proven very effective in solving complex optimization
problems integrates ILP and CP models reducing significantly the solution time. This approach
is based on the Benders decomposition principle and has been employed in many kinds of
scheduling problems, achieving significant speedups in terms of the solution time (orders of
magnitude in many cases) [12, 13].

In this paper, a hybrid approach based on integrating the Logic-Based Benders
Decomposition (LBBD) principle [14] with the pure ILP-based approach to map static
applications represented as DAGs on heterogeneous multi-core platforms is discussed. The
LBBD model employs two complementary optimization techniques (ILP and CP) to iteratively
solve the assignment and scheduling problems, respectively. The master problem is enriched
with various relaxations of the scheduling problem to exclude in advance infeasible solutions,
while the sub-problems communicate through Benders cuts that are strengthened by a refinement
procedure. The effect of each aspect of the method is evaluated through computational results.

The rest of the paper is organized as follows. In Section 2 the related work concerning the
applications of logic-based Benders decomposition is discussed. In Section 3 the target mapping
problem is defined and the corresponding ILP model is introduced. In Sections 4 and 5, the logic-
based Benders decomposition approach as well as the Hybrid approach are explained. The
experimental results and the corresponding discussion are presented in Section 6. Finally,
Section 7 concludes the paper.

-31-



8th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2017)
5-8 December 2017, Kuala Lumpur, Malaysia

2 Related Work

Many methods based on the logic-based Benders decomposition principle have been proposed
and applied in different kinds of scheduling problems, where jobs have to be assigned to multiple
processing elements so that a specific metric is optimized. In [15], the approach is studied in the
general case, combining ILP and CP in order to map a set of unrelated non-preemptive jobs
given release times and deadlines to a set of homogeneous facilities with a certain capacity. The
problem is considered with respect to three different optimization criterions, namely the total
cost, the makespan, and the total tardiness. The highlights of the method are illustrated while
regarding different cost functions and focusing on the cuts generation scheme.

In [16] a set of independent tasks is mapped on a set of machines having different
processing time on each machine and sequence-dependent setup time aiming at optimizing the
total execution time. The problem is decomposed into the assignment of jobs to machines and
their sequencing, which are performed through an ILP model and a specialized solver for the
traveling salesman problem, respectively. In [17], the problem of mapping an application
represented by a DAG to a homogeneous multi-core platform is considered so that their
deadlines of each task are met and it complies to a real-time system. The authors follow a two-
stage decomposition approach based on CP models and focus on finding strong cuts by providing
efficient explanations for the infeasibility of the solution after each iteration.

In [18], a homogeneous multi-core platform is assumed and the goal is the minimization of
the makespan considering the communication delay between tasks on different cores, and the
corresponding memory requirements. The problem is also decomposed into the assignment of
the tasks to the cores by minimizing the data on the communication resources followed by the
model that performes the final scheduling. This work is extended in [19], where a three-stage
approach is proposed by further decomposing the allocation stage into the assignment of the
tasks and the communication memory. The scheduling problem was formulated by a CP model
while the others by ILP ones. A set of novel methods for the Benders cuts generation along with
novel search and filtering methods for the CP model are introduced.

Most of the above works consider homogeneous facilities, which simplifies the solution
process compared to the heterogeneous case. Specifically, the produced Benders cuts are much
stronger since they can exclude many equivalent solutions at once by applying a symmetry
breaking procedure [19]. Moreover, the complexity of the assignment sub-problem is small,
since it considers only one processing time for each task and has to assess fewer assignment
combinations. Finally, in [16] that targets a heterogeneous environment as well as in [15] for the
homogeneous case, precedence relations are not considered between the jobs.

In our previous work an approach targeting the problem of mapping applications on
heterogeneous multi-core platforms was presented [20] based on the Benders decomposition
principle This approach was extended and combined with a pure ILP approach creating a hybrid
solution method [21]. It is the only prior works that addresses the heterogeneous case with exact
methods that always find the optimal solution and exhibits significant speedups of the proposed
approach compared to an ILP model. This work augments the model by introducing additional
relaxation constraints in the master problem that helps to exclude infeasible solutions in advance.
The effectiveness of the introduced relaxations as well as the generated Benders cuts are studied
through experimental results and the different aspects of the solution method are highlighted.

3 Problem Definition and ILP Model

The problem considered in this work is the allocation of the tasks of an application to a set of
heterogeneous cores P = {1, 2, ..., m} and the determination of their execution sequence. An
application is usually described by a Directed Acyclic Graph (DAG), G = (V, E), where
V= {vi, v2, ..., va} is the set of nodes and E = {ej, ey, ..., exz} the set of directed edges. Each
node of the DAG corresponds to a task of the application and each edge, e = (v;, vj), represents
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a data dependency from task v; to v;. Due to the heterogeinity of the platform, the execution time,
D, of task v; on different cores is not the same.

It is assumed that a task starts its execution when all its predecessor tasks have finished
theirs and completes it without preemption. In addition, the communication between the cores
is performed asynchronously via a rich and low-latency interconnection network; thus the
communication overhead is ignored. The goal is to find an assignment of the tasks to the cores
and their execution scheduling that minimizes the total execution time (makespan) of the DAG.

The above problem can be formulated by the ILP model (1)-(5), where ILP solvers can find
an optimal solution given plenty of time. In the following formulation, . is the start time of a
virtual sink node with zero execution time to which all tasks with zero out-degree connect. The
variable # denotes the start time of task v;, while x;, is a binary decision variable that equals to 1
when task v; is assigned to core p, otherwise x;, = 0. The set ON(v;) contains the tasks that are
independent of task v;.

minft,,, (1)

Vv eV x,=1 )

Ve=(v,,v))eE t,+), D,x,<t, 3)

VpeP, Vv, eON(,) 1, +), DX, <t,+(3-x,—x,—a,)M (4)
VpeP, Vv, eON(v,) 1;+), D, x, <1t +(2-x,-x,-a,)M (5)

Equation (2) ensures that each task is assigned to exactly one core, while (3) enforces that
for an edge e = (v;, V), task v; starts its execution after the execution of task v;. A non-overlapped
in time execution sequence between two independent tasks v;, v; is imposed by (4) and (5), when
they are assigned to the same core. Specifically, a; is a binary decision variable that equals to 1
when v; is executed after v;, and to 0 in the opposite case; M is a large integer constant.

Because of the existence of (4) and (5), it is often difficult for an ILP solver to find the
optimal solution in reasonable time. Specifically, the big-M constraints in (4), (5) lead to large
integrality gaps between the integer solution and the relaxed linear solution so that branch-and-
bound may require an enormous amount of enumeration, making it impractical even on a very
fast computer [22].

4  Logic-based Benders Decomposition Approach

The Logic-Based Benders Decomposition (LBBD) approach is an iterative process that
decomposes the initial problem in two (or more) loosely connected sub-problems and solves
them sequentially [14]. Each sub-problem is solved to optimality and fixes a subset of the
problem’s variables, which are used by the subsequent one. After each iteration, extra constraints
are derived by inference from the solution of the final sub-problem. These constraints, called
Benders cuts, are added to the first solved sub-problem, cutting the solution space.
Assume an optimization problem (Primal Problem — PP) in the form of (6).
min z = f(x,y) ©)
st. C(x,y)
where x and y are the variables, z = f(x, y) is the cost function and C(x, y) is the set of the
constraints. As mentioned, the principle of LBBD is to decompose the PP into two (or more)
sub-problems that are solved sequentially. The first sub-problem, which is called the Master
Problem (MP), is a relaxation of the PP in the form of (7). It contains only the variables, x, a
subset Ci(x) of the constraints, and a relaxed cost function w = g(x).
min w= g(x)
st. C(x)
After the solution of MP, the decision variables have specific values x =x* and are fed to
the Sub-Problem (SP), which has the form of (8). In addition, the cost value of the MP,

(7

-33-



8th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2017)
5-8 December 2017, Kuala Lumpur, Malaysia

w* = g(x*), serves as a lower bound of the global solution, since it is produced by a relaxed
version of the initial cost function.
: _ *
min Z_J{‘(x :y) (8)
st. C(x*,y)

The SP may be feasible, producing a new better solution for the whole problem, or it may
be infeasible. In either case, Benders cuts are generated by inference and inserted to the MP.
Their purpose is to guide the MP to produce a solution in the next iteration that will render the
SP feasible so that the global cost value is improved. The iterative process terminates when the
MP becomes infeasible or the cost value of the SP, z*=f(x*, y*), becomes equal to its lower
bound w* = g(x*).

The efficiency of the above method is based on the concept that the sub-problems are
significantly simpler and easier to solve. Moreover, the modeling and solution method is
independent for every sub-problem, allowing to exploit different paradigms depending on each
specific sub-problem. However, its performance strongly relies on the efficiency of the
generated cuts in every iteration to drastically prune the remaining search space. In addition, due
to the loose interaction between the sub-problems, the MP is usually enriched with a relaxation
of the SP in order to have an insight of the remaining problem and produce more suitable
solutions.

4.1 Decomposition of the target mapping problem

The problem under consideration is to find an assignment of each task to a core and an execution
sequence so that the completion time is minimized. Given a specific assignment, the problem of
finding an execution sequence per core (task scheduling) for dependent and independent tasks
is much easier. Therefore, the MP should provide the assignment according to which the SP find
a feasible execution sequence, that is a schedule that improves the best-found cost value
(makespan).

Based on the above decomposition, the purpose of the MP is to find an assignment of the
tasks to the cores according to some optimization criterion. The chosen criterion is a relaxed
version of the makespan, meaning that the MP should minimize the start time of the sink node
by satisfying only the tasks’ dependencies. Hence, it has to optimize (9) subject to(10), and (11)
. As the constraints of the MP are simple linear constraints without big-Ms, it is modeled through
the same ILP formulation.

On the other hand, the SP should find a feasible execution schedule by deciding about the
sequencing of independent tasks assigned on the same core and respecting the data dependencies
between the tasks so that the makespan is minimized. The SP is modeled through the following
Constraint Programming (CP) formulation, which replaces the big-M constraints ((4), (5)) of the
initial ILP formulation.

mln tsink (9)
Ve:(vi,vj)eEtl.+Di <t (10)
Vv, eON(v,)|X, =X, t,+D,<t,vt, +D, <t (11)

In the above formulation, f, #; are in agreement with the initial ILP model. X; and D; are
positive integers that denote the assignment and execution time of task v;, respectively, whose
values are derived by the solution of MP. The objective function and the precedence constraints
are the same as in the MP. In more details, (10) corresponds to(3), while (11) replaces (4) and
(5), and states a disjunctive relation on independent tasks that are assigned on the same
processor.

According to the above decomposition, the MP totally ignores the sequencing of
independent tasks that may be assigned on the same core. Thus, a relaxed version of the SP
should be included in the MP in order to exclude assignment combinations that will definitely
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render the SP infeasible [15, 23]. Finally, an important point of the decomposition approach is
the generation of the initial solution, since there may be a great gap between the solutions of the
sub-problems especially during the first iterations. To overcome this limitation, a heuristically-
generated initial solution was used employing the HEFT heuristic [5].

4.2 Enriching Master with Sub-Problem Relaxation

The relaxation of the sequencing problem should be able to identify assignment combinations
of independent tasks that will definitely result in an infeasible SP or, in our case, in a worse
makespan value. Instead of performing a simple overload cheking, a more sophisticated
procedure has been proposed in [24, 25] as a pre-processing algorithm. The introduced procedure
is based on examining the time windows in which several tasks can be executed. Then, it builds
constraints for the tasks that can be assigned on the same core so that their bounds are satisfied
when they are executed sequentially. The time window for the execution of each task is defined
by its release (RL) time and its deadline (DL). This algorithm produces knapsack constraints in
the form of (12), where K is the set of tasks that can be executed inside the time window [DLk,
RLk]. Moreover, it consists of an additional stage that produces cover constraints on tasks that
where not examined during the computation of knapsacks.

VpeP . D,x, <DL, —RL, (12)

In order to apply the preprocessing algorithm of [24, 25] to the current problem, the release
time (RL) and the deadline (DL) of each task are considered as the earliest start and latest finish
time, respectively. These values can be derived directly from the DAG, since each task can start
its execution when all its predecessors have finished theirs, whereas it must complete it so that
enough time remains for its successors to complete theirs without increasing the makespan.
Thus, the earliest start time of every task is the defined by the maximum value of the earliest
completion time among its predecessors, while the latest completion time or deadline is defined
by the latest start time of its successors. Hence, they can be computed by simply traversing the
DAG.

The deadline for the sink node is set to zpesr —1, Where zpes 1s the best-found solution until
that point of the iterative process, stating that the desired solution should be better than the best-
found one. The deadline of the other tasks is also computed as a function of the best-found
solution, meaning that it can be defined by a value d; that should be subtracted from zp.y so that
DL;= zpess— d;, where dsine=1.

However, the core with the minimum execution time may be the same for two or more
predecessor tasks or the number of predecessor tasks may be larger than the number of the
available cores. Both these situations are not taken into account when computing the execution
window of each task by traversing the DAG, whereas they are captured by the following ILP
model, whose purpose is to compute the minimum completion time of a set of independent tasks.

min z (13)
Vv, eVt Yy x, =1 (14)
VseS, VpeP rs+z/ngpxjpS z (15)

In the above formulation, z is the makespan of the set of independent tasks, V. This set
corresponds either to the set of direct predecessors or the successors of a task if it refers to the
computation of the release time or the deadline, respectively. Set S contains all the subsets of
tasks that are created based on the different release values of the tasks. In detail, for every distinct
value, the tasks whose release time is greater or equal than this value are contained in a subset.
Finally, ry is the earliest start time of the subset s. The same formulation can be used to compute
the value d; that should be subtracted from z.y in order to compute the deadline for every task.
Since the earliest start and latest finish time of every task consider the sequencing of the
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predecessors and successors, respectively, the following constraints are also included as a sub-
problem relaxation in the MP.

Vv, eVt 2RL (16)
VeVt +), D,x, <DL (17)

The pre-processing algorithm of [24] generates constraints only on a single core assuming
that every task can start its execution on its release time. However, the earliest start time depends
on the end time of all its predecessors. Thus, when they are assigned on the same core they will
be executed sequentially, increasing the start time of their successor. Moreover, if those nodes
have a common predecessor, their start time depends on its end time.

The situation described above is captured by the following constraint, where v; is a fork
node whose dependent tasks contained in the set K are joined on node v;. Combined with the
constraints (16) and (17), it corresponds to a knapsack constraint on the time window defined
by [RL;, DL;] that consider the assignment of tasks v;, v; on different cores than the tasks between
them.

VpeP,Y f=(v,v))eE t,+), D,x,+>, D, x,<t, (18)

Makespan Speculation.

Both relaxations described above introduce a part of the sequencing problem in the MP,
while their purpose is to exclude assignment combinations that will definitely lead to worse
makespan values. Especially during the first iterations, the best-found solution may be far from
the optimal one. Consequently, many inefficient solutions are produced by the MP until a better
solution is found and the relaxation is tightened.

To avoid this situation, the relaxation can be tightened artificially by providing a speculated
solution that is smaller than the actual best-found one. The speculated makespan value, zy, ranges
between the lower bound of the global makespan and the best-found solution, zpes.

The algorithm that follows describes the employed procedure [20]. Initially, the solution
of the MP (w*) serves as a lower bound, but it is updated when the MP becomes infeasible. This
happens because it becomes overconstrained due to the tightening of the relaxation by the
speculated value. Then, the lower bound of the global solution is updated to the speculated value
that causes the infeasibility of the MP. The upper bound is initialized to the solution of the HEFT
heuristic, zygrr.

In the case that the MP is feasible, the SP is solved, and if it provides a better solution than
the best-found one, the upper bound is updated, while the speculated value is relaxed. If however
the returned makespan is worse, then a tighter speculated value is computed and employed in
the next iteration.

1b=w*, ub= zygrr , 2Zs=|[(1b+ ub)/2]
while 1lb # ub do

solve MP to optimality

if infeasible then

1b = z4
zs = [(1b + ub)/2]
else

solve SP to optimality
if Zsp < ub then

ub = Zsp
zs = [(1b + ub)/2]
else
zs = [(1b + zs)/2]
end if
end if

end while

-36 -



8th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2017)
5-8 December 2017, Kuala Lumpur, Malaysia

The speculated value that causes the infeasibility of the MP is larger than the solution that
is normally returned by the MP, since it is based on a relaxation of the sub-problem. Therefore,
this procedure also provides better information about the bounds where the optimal solution
might lie. Finally, every time when the speculated value is relaxed, the cover constraints of the
SP relaxation that where added earlier are removed, whereas the right hand side of the knapsack
constraints is updated.

4.3 Benders Cuts

After each iteration where the sub-problems have been sequentially executed, extra constraints
are generated and added in the master problem for the subsequent iteration. The purpose of these
constraints, called Benders cuts, is exclude the previous solution so that another one is generated.
This can be achieved with a simple constraint of the form of (19) that excludes only the current
assignment.

DXy Sl x.=1peP (19)

However, the above constraint is very weak since it excludes only one combination of x;,
variables. If the cardinality of the assignment constraint is reduced, that is it contains less
decision variables, it becomes significantly stronger. This can be done by gradually adding
variables in a set and checking the feasibility of the SP considering only the variables of the set
until a failure is detected. The order according to which the variables are inserted in the set is
defined by a chosen criterion. In our case, the tasks are sorted in a non-decreasing order
according to their slack, which is defined by the difference between their latest and earliest start
time.

Even though the cardinality of the conflict set is reduced, its computation imposes a
significant time overhead. In order to reduce it, the conflict set C is initialized with the tasks
whose slack equals zero. The others are sorted and gradually added to the set until the
infeasibility is detected according to the following procedure.

feed SP with C and solve to feasibility
while feasible do

add next task to C

feed SP with C and solve to feasibility
end while

The resulting conflict set can be further reduced employing the algorithm provided in [26].
However, this algorithm also imposes significant time overhead, since it should be used in every
iteration. Instead, the following procedure was employed, which considers the task that caused
the infeasibility an important one. Then, it adds it to the refined conflict set R, which is initialized
with the tasks whose slack equals zero. Afterwards, the remaining tasks are added gradually until
the infeasibility is detected. The procedure terminates if less than two tasks have been added in
the conflict set until reaching the infeasibility, so the set cannot be further reduced.

while |R|<|C|-2 do
add last task of C to R, set C =R
feed SP with C and solve to feasibility
while feasible do
add next task to C
feed SP with C and solve to feasibility
end while
end while
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The main core of the previous algorithms is the solution of the SP considering different
sets of tasks until it becomes infeasible. In order to further decrease the overhead that is caused
by this procedure, it was performed in parallel launching multiple CP models and collecting the
results. This way, the demanded conflict set was smallest among the infeasible models.

5  Hybrid Approach

The logic-based Benders decomposition approach, when applied to the problem of mapping and
scheduling of DAGs on heterogeneous cores, has achieved remarkable speedups in terms of
solution time and has managed to find the optimal solutions in problems where other methods
have failed to do so [20]. However, this method has some limitations that arise due to the
decomposition of the original problem. As the solution procedure progresses and a good or even
the optimal solution has been found, many assignment combinations are left to be evaluated that
cannot be excluded by the relaxation of the sub-problem that is included in the MP.

In that above case, the method relies only to the Benders cuts in order to prune the
remaining search space. As these cuts may be not so strong to drastically prune the solution
space, the MP produces many equivalent solutions that do not lead to better makespan values.
In this case, the process terminates after all the remaining assignment combinations are
enumerated. On the other hand, the pure ILP approach suffers from poor LP relaxations and
large integrality gaps when big-M constraints are used. Consequently, without being able to
generate efficient cutting planes, the branch-and-bound tree becomes enormous and the problem
intractable. Nevertheless, if the search space is reduced by an external source, this method can
generate strong cutting planes and can be very efficient in improving the solution or proving the
optimality of the best-found one.

To combine the strengths of the solution methods, the LBBD approach presented in the
previous section is employed as a cut generation scheme. The iterative process is stopped at
some point and the pure ILP model is launched while containing the extra constraints that were
generated by the LBBD method. Then, it runs with a time limit so that it is stopped when it
cannot quickly close the gap and reach the optimality. Even though the ILP model may not end
the solution process, it may produce a feasible solution, that is a solution that improves the best-
found makespan up to that point. In this case, a cover cut is derived from this solution using the
algorithms of the previous section. The LBBD method is launched again trying to produce more
cuts or find the optimal solution [21].

6  Experimental Results and Discussion

The introduced approaches were evaluated on randomly generated DAGs by an in-house
software tool. The tool takes as input the number of nodes, minimum and maximum execution
times per node, minimum and maximum depth between start and sink nodes, the minimum and
maximum number of edges and the distribution policy of edges between nodes and the number
of DAG to generate. All models were developed using the FICO Xpress Optimization suite [27].
The experiments were run on an i7 6-core PC operating at 3.2 GHz with 16 GB installed memory
and a Time Limit (TL) equal to two hours was set.

The experimental results are shown in Table 1 for the ILP, the LBBD, and the Hybrid
approaches. The initial solution provided by the HEFT heuristic was also used as an upper bound
on the solution in the ILP model, which is referred to as HILP in Table 1. Each row of the table
represents 10 DAG instances, resulting in the total amount of 60 instances. Table 1 shows the
number of instances that were solved optimally (OPT) and the ones that reached the time limit
(TL) without finding the optimal solution, as well as their average solution time for each group
defined by the number of tasks and cores. For the computation of the average time, the solution
time of the instances that were not solved within the time limit was set equal to the limit.

By the results of Table 1, it can be observed that the pure ILP model is not able to find the
optimal solution for the majority of cases, while it fails even in most of the small-scale problems.
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On the other hand, the LBBD approach is very efficient when compared to the ILP, since it
solves optimally the vast majority of instances while it is 9x faster. Finally, the Hybrid method
achieves to solve all the instances while being also twice as fast as the LBBD one.

Table 1. Experimental Results

OPT/TL Average Time (sec.)

Tasks / Cores HILP LBBD Hybrid HILP LBBD Hybrid
20/2 4/6 10/0 10/0 4353.1 5.2 4.3
20/4 4/6 10/0 10/0 1137.1 0.4 0.4
30/4 0/10 6/4 10/0 - 2514.8 1580.3
30/6 4/6 10/0 10/0 4594.4 63.6 7.7
50/8 4/6 8/2 10/0 5301.8 49.8 30.6
50/10 1/9 7/3 10/0 6647.6 752.3 54.4

Overall 17/43 56/4 60/0 5287.4 564.3 279.6

An important part of the LBBD method is pruning of the remaining solution space by

generating strong Benders cuts. In order to evaluate the efficiency of the refinement procedure
(Section 4.3), Table 2 shows the results with and without it for the LBBD and the Hybrid
approaches. As it can be observed, the generated cover cuts without the refinement procedure
are strong enough, since the corresponding cases solve the same number of instances. The
refinement of the cuts reduces the number of performed iterations of the LBBD approach,
slightly reducing the solution time. Nevertheless, the Hybrid approach can benefit even from the
weaker cuts, whereas the overhead for the computation of stronger cuts causes the slight
deterioration of its solution time.

Table 2. Experimental Results Without and With Refined Cuts

OPT/TL Average Time (sec.)
LBBD Hybrid LBBD Hybrid
Tasks / Cores w/o Ref. w. Ref. w/o Ref. w. Ref. w/o Ref. w. Ref. w/o Ref. w. Ref.
20/2 10/0 10/0 10/0 10/0 3.3 5.2 4.3 4.3
20/4 10/0 10/0 10/0 10/0 0.5 0.4 0.4 0.4
30/4 713 7/3 10/0 10/0 3228.2 2514.8 | 1147.4 1580.3
30/6 10/0 10/0 10/0 10/0 79.3 63.6 10.3 7.7
50/8 10/0 10/0 10/0 10/0 58.4 49.8 64.4 30.6
50/10 9/1 9/1 10/0 10/0 786.3 752.3 19.1 54.4
Overall 56/4 56/4 60/0 60/0 692.7 564.3 207.7 279.6

The effectiveness of the presented iterative approaches relies mostly on the relaxations of
the sub-problem that are inserted in the master problem, since each achieves in its own way the
exclusion of infeasible assignment combinations. However, the complexity of the master after
the inclusion of relaxed versions of the sub-problem should remain small. Table 3 shows the
experimental results for the LBBD approach when different combinations of the presented
relaxations are considered in order to explore their contribution. In all cases, the refinement cut
procedure is included.

The first relaxation refers to the Independent tasks Sequencing (IS) that is captured by the
knapsack constraints generated by the pre-processing procedure of [24]. These constraints
(Section 4.2, Eq. (12)) are generated for every core for tasks based on their execution time
window, which is defined by their release time and deadline. The second relaxation is the
Dependent tasks Sequencing (DS) that captures the sequential execution of tasks that are
dependent on the same predecessor and have a common successor (Section 4.2, Eq. (18)). This
relaxation is considered with conjunction with the previous one in Table 3 (/DS). Finally, the
makespan speculation procedure is applied to both relaxations and are shown in Table 3 as ISS
and /DSS, respectively.

With the application of only the IS relaxation, 12 instances remain unsolved while the
solution time is about 30 min. After applying the makespan speculation procedure, 3 more
instances are solved while the solution time also decreases, since the relaxation is tightened in
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the initial stage of the solution procedure and many unnecessary iterations are avoided. The
addition of the second relaxation even without the speculation procedure is very effective and
solves more instances than the previous one with smaller solution time.

The effectiveness of the DS relaxation is owed to the fact that it more active as the solution
process progresses. Specifically, instead of the greedy assignment of the tasks by the master
during the first iterations, it is forced by the Benders cuts and the knapsack constraints to assign
tasks to cores where their execution time is larger. This way, the start time of the dependent tasks
may be larger than their release time, whereas their sequential execution may also increase the
makespan. Finally, when this relaxation is combined with the speculation procedure, one more
instance is solved while the time also decreases.

Table 3. Evaluation of Relaxations in LBBD Approach

OPT/TL Average Time (sec.)
Tasks / Cores IS 1SS IDS IDSS JAY 1SS IDS IDSS
20/2 10/0 10/0 10/0 10/0 22.3 6.9 12.9 5.2
20/4 10/0 10/0 10/0 10/0 12.9 0.5 10.6 0.4
30/4 5/5 6/4 6/4 713 4550.7 3311.6 3256.7 2514.8
30/6 10/0 10/0 10/0 10/0 723.5 399.8 115.6 63.6
50/8 6/4 8/2 10/0 10/0 3215.1 1584.3 13194 49.8
50/10 7/3 7/3 9/1 9/1 2613.8 2619.1 1003.3 752.3
Overall 48/12 51/9 55/5 56/4 1856.4 1320.4  953.1 564.3

The effect of the included relaxations is also important for the performance of the Hybrid
approach. As mentioned, it is based on the speculation procedure, which provides better
estimation of the lower bound of the solution; thus, this procedure is included in the results of
Table 4. With the addition of the DS relaxation the solution time is about 4.5 min. while all
instances are solved, whereas containing only the IS relaxation, one instance remains unsolved
with twice as much solution time.

Table 4. Evaluation of Relaxations in Hybrid Approach

OPT/TL Average Time (sec.)

Tasks / Cores ISS IDSS ISS IDSS
20/2 10/0 10/0 6.4 4.3
20/4 10/0 10/0 0.5 0.4
30/4 9/1 10/0 2224.4 1580.3
30/6 10/0 10/0 12.4 7.7
50/8 10/0 10/0 32.7 30.6
50/10 10/0 10/0 32.5 54.4
Overall 59/1 60/0 575.5 279.6

7 Conclusion

In this paper, an iterative solution approach based on logic-based Benders decomposition was
presented. The effectiveness of the method relies on the relaxed versions of the scheduling
problem that are included to the assignment problem and help to exclude in advance many
infeasible solutions. The effect of each relaxation as well as the Benders cuts was
computationally evaluated through experimental results. By augmenting the model all the
evaluated instances were optimally solved within a time limit of two hours, while the overall
solution time was also significantly decreased. As a future work, we intend to extend the above
hybrid model to capture the data transfer delay between the tasks as well as the memory
requirements for their communication.
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A Weight Assignment Approach for Multicriteria Global
Path Planning of an Unmanned Combat Vehicle

Veekeong Saw - Amirah Rahman - Wen Eng Ong

Abstract In path planning of an unmanned combat vehicle, we aim to find solution
paths that visit all checkpoints while minimizing the accumulated cost factors. In this
paper, we consider the global path planning problem of an unmanned combat vehicle
which has been modeled into a multiple criteria traveling salesman path problem on
a grid network. An algorithm using weight assignment approach is proposed to find a
solution path. To demonstrate the proposed algorithm, computational experiments are
conducted on simulated maps. Initial experimentation demonstrates that the solution
path generated for different problem instances are affected by the weight assignment
of different attributes as well as the tabulation of the terrain and the positioning of the
checkpoints.

1 Introduction

An unmanned combat vehicle (UCV) is an armed robotic vehicle used to substitute
human participation in high risk military operations. A UCV is controlled via wire-
less communication signal from an external control station. The path planning and
navigation process of a UCV is controlled by operators through user interface in the
control center [8]. The navigation control of a UCV is divided into local path planning
(LPP) and global path planning (GPP). LPP is a real-time process that maintains
the stability and safety of UCV throughout the journey. On the other hand, GPP is
a deliberate process of searching for feasible travel paths based on user requirements.
Modern UCVs are equipped with LPP navigation systems, thus no human intervention
is needed to ensure the stability of the UCV throughout the mission. Hence, in this
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study, we assume that the UCV is equipped with LPP navigation system, where it can
perform obstacle avoidance, stability maintenance and direction changes by itself.

To perform the GPP process, the terrain map needs to be represented in a form
where a path searching algorithm can be implemented. There are three main rep-
resentation methods used: cell decomposition, roadmap, and potential field. Among
these three methods, cell decomposition method is the most frequently used due to its
simplicity and flexibility [3]. By using cell decomposition method, the map of area of
interest (AOI) is inscribed into a grid made of uniformly arranged cells. The terrain
information of the region inscribed in the particular cell is associated to the correspond-
ing cell. Then, the path searching algorithm is conducted based on user input and the
data associated to the grid. If a solution path is found, the algorithm will generate the
path and project it onto the map. Otherwise it will report failure.

In general, the GPP of a UCV has the objective of finding a travel path that
minimizes resource consumption. Note that the resources are not limited to physical
attributes such as traveling distance, fuel consumption or ammunition consumption. It
can represent non-physical attributes such as potential threat level, terrain sloppiness,
or signal strength. In the grid, the traveling paths are described as a sequence of
cells that the UCV needs to pass through. The resource consumption for the UCV
throughout the journey can be estimated by the cumulative costs of various attributes
along the traveling path. GPP problems with single attribute are known as single
criteria problem, while GPP problems that involve multiple attributes are known as
multicriteria problems.

The GPP problems with only two checkpoints (origin and destination points) are
often modeled as shortest path problems [4], [7]. Also, GPP problems with multiple
(more than two) checkpoints are mostly modeled as traveling salesman problem (TSP)
or one of its variants [1], [5], [11], [12]. Single criteria GPP problems that modeled
as TSPs has been solved using Christofides algorithm [2], convex hull method [6],
and various heuristics as reported by [9] in his review paper. On the other hand,
multicriteria GPPs that modeled as TSP has been discussed by [1], [11].

In this paper, we consider the GPP problem with multiple checkpoints on a grid
map. The objective is to find a path that travels all checkpoints with unique starting
and destination point, that minimizes the cumulative cost of the attributes. Our prob-
lem is modeled as a traveling salesman path problem (TSPP) with 2 unique endpoints
in a grid network. The TSPP with 2 unique endpoints is a variation of the TSP, which
search for least cost Hamilton path with 2 unique endpoints, instead of searching for
least cost Hamilton cycle as in TSP.

We make the following assumptions:

1. Each attribute is assigned a weight by the user that represent its importance relative
to one another.

2. The UCV is in good condition before it starts its journey, so there is no need to
return to base for servicing during the mission.

3. The grid is eight-connected, meaning that the UCV can move freely to any one of
the eight adjacent cells in the grid if available.

4. The cells in the grid can be traversed more than once if necessary.

Figure 1 shows an example map for a GPP problem, where a series of checkpoints
(depicted as flags) are required to be visited, where s and ¢ are starting and ending
locations respectively. Throughout the journey, the UCV has to avoid enemy territory
and enemy detection (depicted as rifles and radars respectively).
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Fig. 1: An example of a satellite terrain map with checkpoints and attributes.

2 Problem Description

In this study, the area of interest is inscribed into an N x N grid, where each cell in the
grid stores the cost value of traverse time (time required to pass through a terrain),
risk level (likelihood of an UCV to face a threat), and signal interference level (level of
signal interruption encountered by UCV) of the corresponding region. For simplicity,
we call these attributes as attribute 1, 2, and 3 respectively. The grid is modeled into
an undirected graph G. The terminology, notation, and definitions related to graph G
are listed as follows:

s,

V1,02, ...

Ti,j

Ci,j

Suc(i)
Pre(t)

Undirected graph G = (V, E, ¢)
Set of N x N vertices representing the cells in the grid

Set of edges representing the link between two adjacent cells,
ie. B = {(i,)li,j € V}

Cost function ¢ : V — R3 that maps vertex i to cost vector c(i) = (c
where cff represent the cost of attributes k = 1,2, 3 for vertex ¢

et ed),
Set of n 4 2 checkpoints need to be visited, i.e. A = {s,v1,v2,...,0n,t} TV
Unique starting and ending points

Intermediate points

Path from vertex 4 to j, written as a sequence of vertices m; ; =<1,...,5 >

Cost of path m; j, given by the addition of cost vectors of all
traversed vertices, i.e. Ci,j = 34 i c(k)

Path concatenation operator: a concatenation of path m; ; and 7; ,
denoted by m; j @ 7k, gives path m; p =<14,...,7,..., k>

Set of successors of vertex i, i.e. Suc(i) = {j|(i,j) € E}
Set or predecessors of vertex i, i.e. Pre(i) = {j|(j,7) € E}
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mi,,%,j € A Partial path: a path between two vertices in A

TSt Complete path: a path that joins s to ¢t and pass through all the
intermediate points in A. i.e. ﬂ:’t =< Sy Uiy ey Vigy e ey Uiy e ey 02>
where v, ,vi,,...,v;, are all the intermediate points

Note that a complete path w5, =< s,..., 05, Vigseees Uiy _qseves Ui,y t >
that contains |A] = n + 2 checkpoints is a concatenation of n + 1 partial paths
Ts,vi D Moy 0 O @iy 0, @ o, ¢, Where vy, iy, ..., 05, _,,0;, are all the in-

termediate points in A.
Let x; be defined by

1, if vertex ¢ was traversed in the path,
T =
! 0, otherwise.

Our problem is formulated as follows:

Minimize Z zict (1)

eV

Minimize xiclz (2)
%

Minimize a:icf’ (3)
eV

subject to

> ozi>1, VieA( (4)

jESuc(s)
Y. % =0, (5)

jESuc(t)
ooz, Vied\{s) (6)

jE€Pre(t)
Z z; >0, (7

jEPre(s)
Yoomi+ > wy=2k, k>0ViecV\{st} (8)

jeSuc(i) jEPre(i)
Soowit Y wi=2%+1, k>0i=st (9)
jE€Suc(i) jePre(i)

S>> wz1, VSCVS#£D (10)

i€S jESuc(i)nS’
z;€{0,1}, VieV (11)

Objective functions (1) to (3) represent the three cost factors (traverse time, risk level,
signal interference level) to be minimized. Constraints (4) and (5) ensure that the path
leaves every checkpoint in A at least once (except vertex ¢, which will only be traversed
if necessary). Constraints (6) and (7) ensure that the path enters every checkpoint in A
at least once (except vertex s, which will only be traversed if necessary). Constraints (8)
and (9) preserve flow conservation throughout the path. Constraints (10) prevents the
solution path from forming subtours.
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3 Solution Approach

In Section 2, the GPP problem was formulated as a multicriteria optimization problem.
We propose a heuristic based on additive weighting method to reduce our multicriteria
optimization problem into a single criteria optimization problem. We solve our problem
using an extended version f the two phase heuristic method proposed in [10]. The
extension exists in the form of a preprocessing stage where the multiple attributes are
reduced to a single attribute using user defined weights.

3.1 Preprocessing stage

In a terrain map, the costs of different attributes may be assigned in different scales,
depending on the map source. To ensure that all attributes have an equal level of
significance, the cost of each attribute is normalized into a common range of [0, 1].
Here, we implement min-max normalization method to transform original cost vectors
into the normalized cost vector for all vertices in the graph. The normalized cost vector
correspond to vertex i € V is defined as &(i) = (é,¢7,&}), such that

k k
k% — Cmin
G =% ko

Cmaz — Crin

where c’;fnm

k=1,2,3.

Let the user defined weight vector be w = (w1, w2, ws), where wy, wa, and w3
represent the weights for attribute k = 1, 2, 3 respectively, such that 2‘2:1 wy, = 1 for
w1, w2, ws > 0. By using additive weighting method on the graph G with normalized
cost vector, we construct the graph G’ = (V’/, E’, ¢) in the following manner

1.V =V,E' =E.

2.¢ : V. — R is a additive weighing cost function such that for ¢ € V’,
(i) = wle(i)]" = 24 widl

3. The cost of path between vertex i and j in G’ is C} ; = Zkem,j d (k).

4. The definition for path, path concatenation, successor set, predecessor set in G’ are

similarly defined as in G.

and cfmm represent the minimum and maximum cost value for attribute

Based on the graph G’, our problem can be reformulated as single criteria opti-
mization problem that minimizes the objective function

w1 Z Jiiéll + wa Z xiéf + w3 Z 131'5?
i€V eV i€V
subject to the constraints set in Section 2.

The reduced GPP problem formulation above is an s-t traveling salesman path
problem (stTSPP), which is a variation of traveling salesman problem (TSP). In this
study, we relax the Hamiltonian property restriction on the solution generated in as we
have already made the assumption that the vertices may be visited more than once. In
stTSPP, a complete undirected weighted graph is provided and the objective is to find
a path that starts and ends at uniquely given endpoints and passes through all other
points, such that the total travel cost is minimized. The two phase heuristic used to
solve the problem was proposed in [10]. We present the detailed explanation for the
procedure in the following subsections.
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3.2 Phase 1: Generating the complete graph G g

In Phase 1, we find the shortest partial path between all pairs of checkpoints i,j € A
on G’. As G’ is undirected, C’z{’j = C;Z for all pairs of checkpoints. In total, there are
(";2) non-directed paths connecting all pairs of checkpoints. We implement Dijkstra’s
algorithm to find all these shortest paths. Note that in typical shortest path problem,
the cost is associated on the edges of the graph and the path cost is calculated by
summing up the cost of traversed edges. However, in G’ the cost value is associated on
vertices of the graph. Hence, while applying the Dijkstra’s algorithm, the path cost is
calculated by adding the cost associated to the vertices instead of edges.

Let AR be defined as Ap = {p1,p2,..-,Pn+2} such that p; = s,pr = vp_1 for
k=23,....,n+1 and pp+2 = t. The details of Dijkstra’s algorithm is shown in
Algorithm 1. For each pair of checkpoints p;,p; € Apg, the minimum cost of path
between p; and p; is C/i,p,-a and its path mp, p, can be found by using procedure
Generate Path described in Algorithm 2.

Algorithm 1 Dijkstra’s algorithm

Require: G' = (V' E', ), Ar = {p1,...,Pn+2}
1: for all p;,p; € Ag, (i # j,i > j) do

2: S* 0 > S*: Set of vertices k of which minimum C;)i & is obtained
3: S« V! > S: Set of vertices k of which minimum CZ/Ji i 18 not obtained yet
4: Cp. p; < c(pi)

5: Cy, 1, oo forall k€ V/\{p;}

6: while p; ¢ S* do

7 i* + arg minkeS{C’Z’” o) > i*: Vertex k € S with minimum C’Z’U &
8: S+ S—{i*}, 5" «+ S*uU{i*}

9: for all v € Suc(i*) do

10: if Gy, , > Crlu,i* + ¢(v) then

11: Chiw & Cp i +c(v)

12: Prev(v) + i*

13: end if

14: end for

15: end while

16: perform Generate Path

17: end for

Algorithm 2 Generate Path
i Tp;,p; < empty stack
U — P > u: Variable used to store the predecessor vertices
: while Prev(u) exist do
insert w into mp; p;
u — Prev(u)
end while
: insert w into mp,,p;

NPT W
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3.3 Phase 2: Search for the best complete path

In Phase 1, the shortest path between all pairs of checkpoints in G’ is found using
Dijkstra’s algorithm. We use all the paths to construct a complete graph Gg. The
construction of complete graph G = (Vi , Ex, ck ) is defined as follows:

1. The vertex set, Vi = A.

2. The edge set, Ex = {(i,7)|i,j € A} , where |Eg| = ("$?).

3. The edge cost function, cx : Ex — R is defined as cx (4, j) = Cz{,j — (i) — ().

4. For i,j € Vg, the path from i to j, II; ; is an alternating series of vertex
and edges, such that IT; ; =< i, (i,u1),u1, (u1,u2),u2, ..., Uz, (Uz,j),j >, where
Ui, u2,...,uz € Vi . For simplicity, we write IT; ; =<1, ul,uz, ey Uz, g >

5. The cost of the path II; ;, denoted by C’l j» s given by C’ Z(uﬂ))eni,j ci (u,v)+

Ykem, ;€
6. A cycle that starts at vertex i, denoted by C’yc(') is a path that begins and ends
with vertex . The cost of Cyc(i) is given by CCyc( )y = Z(u v)ECye(i) cK(u v) +

!
ZkECyc(i)c (k)
7. The concatenation of two paths II; ; =< i, (4,u1),u1,...,usz, (Uz,j),j > and
II; ) =< §,(j, uz+1), Uz+1, - - -, Uy, (uy, k), k >, denoted by I1; ; © I1; 1, is given by
H’L,j b Hj,k =< i? (i7u1)7u17 cee, Ug, (uI7j)3j7 (j7ul‘+1)7u.’l)+17 ceey Uy, (Uy»k)yk >.

The stTSPP is equivalent to the standard TSP in which the edge cost con-
necting s and ¢, is replaced by —M, where M is a sufficiently large value
such that M > max(w)#&t){c;((i,j)}. Hence, solution for standard TSP on
Gig = (Vi, Eg,ck) with ci (s,t) = —M corresponds to the solution path for stTSPP
on G = (Vk, Fx,ck) with ck (i, 7) remain unchanged for all i,5 € V.

We solve our TSP using the nearest neighbor algorithm (NNA). The NNA starts
by randomly selects a vertex ¢ as a starting point and visits the immediate best (least
cost) vertex until all the vertices are visited and finally returns to the initial vertex.
This forms a least cost cycle that passes through all vertices. However, as NNA is a
greedy algorithm, the least cost edges are always selected first, which leaves high cost
edges to be chosen in later. Hence, NNA does not guarantee an optimal solution is
found. The procedure of NNA for TSP on G = (Vk, Ex,ck) with cx (s,t) = —M is
given in Algorithm 3.

Algorithm 3 Nearest Neighbor Algorithm (NNA)
Require: G = (Vi, Fx,ck) with cx(s,t) = =M, Ar = {p1,...,Pn+2}

1: S« AR > S: Set of vertices not selected yet
2: Select a random p; € S

3: S« Ar —{pi}

4: Cye(pi) < pi >, CF (py < ¢ (Pi)

5: while S # () do

6: 1 < last vertex in Cyc(p;)

7 i* « argminges{cx (I, k)} > i*: Vertex k € S with least cx (I, k)
8: S+ S—{i*}

9 Cyc(pi) « Cye(pi) & {(l,i")}
10: ckE +«CcE

Cye(pi) ) +er (L) + )
11: end while

12: | + last vertex in Cyc(p;)

13: Cyc(pl) < Cyc(p;) ® {l,pi}

. K
14: CCyc(p7 — CCyc(p ) +cx(l,pi)

Cyc(p;
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To increase the likelihood in obtaining a better solution, an improvement technique
known as repetitive nearest neighbor algorithm (RNNA) is performed. RNNA conducts
NNA n + 2 times by starting at each checkpoint in A once. This gives n + 2 least cost
cycles Cyc(i) that pass through all checkpoints. Among these n + 2 cycles, the cycle
with least cost is chosen. Then, the edge (s,t) is removed from the selected cycle. This
forms the least cost path IIs; that connects s to ¢ and passes through all checkpoints,
which is the solution for stTSPP in Gk . The algorithm for RNNA is described in
Algorithm 4.

Algorithm 4 Repetitive Nearest Neighbor Algorithm (RNNA)

Require: Gx = (Vk, Ex,ck) with ¢k (s, t) = =M, Ag ={p1,...,Pn+2}
1: Cyc* + empty sequence > Cyc*: Least cost cycle among Cyc(i),Vi € Ag.
: for all point p; € Ar do
Perform NNA > Line 2 of NNA: select p; instead of randomly select a vertex in S.
end for
Cyc* + argming,, c A, {C({‘(yc(m) }
: Remove edge (s,t) from Cyc* to form a path IIs =<s,...,t >.
: CK — CCyc* + M

To trace the complete path 75 ; on terrain map, the corresponding edges in ITs ¢
are concatenated, such that 7r;f7t = Ts,viy B Moy 0, @ @ Toy 0y, O T, ¢, Where
Tu,v 18 the shortest path between the vertex u and v as found in Dijkstra’s algorithm.
The total cost of the complete path in terrain map is given by Cs ¢ = Ekeﬂ-s,f, c(k).

4 Results and Discussion

In this section, a GPP problem demonstration and computational experiments are con-
ducted using a simulated terrain. The terrain was designed by using Wolfram Math-
ematica® software and all the algorithms are coded in C++. The details of problem
demonstration and computational experiments are explained as follows.

4.1 Algorithm Implementation

We demonstrate our proposed algorithm using the simulated terrain as shown in Fig-
ure 2(a). The terrain is inscribed onto a 15 x 15 grid in Figure 2(b) with the set of
checkpoints A being marked and their coordinates stated. The distribution of attributes
in the terrain are shown in Figure 3. The costs of each cells are assigned with integers
ranging from 0 to 9. Then, the grid is modeled into the graph G = (V, E,c) as in
Figure 4. Note that the cell (4,7) in the grid corresponds to vertex 15(¢ — 1) + 7 in G
for 4,5 € {1,2,...,15}. The corresponding vertex number for all the checkpoints are
listed in Figure 4. We assign the weight vector to be w = (0.7,0.2,0.1).
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10 11 12 13 14 15
B e

Checkpoint  Coordinate

s (2,2)
v1 (4,12)
va (10, 14)
vs (11,3)
t (15,9)
(a) Simulated terrain. (b) 15 x 15 grid and their coordinates.
Fig. 2: Inscribing terrain onto a grid.
0 1.8 3.6 5.4 7.2 9.0
Traversing Time Risk Level Signal Interference Level
1 5 10 15 1 5 10 15 1 5 ° 1

Fig. 3: Terrain attribute distribution.

Checkpoint ~ Vertex no.

s 17
v1 57
V2 149
v3 153

t 219

Fig. 4: Graph G representing the grid and checkpoints with their corresponding vertices in G.
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Next, the cost vector in every vertex i is normalized. For example, the normalized
cost vector for vertex 8 is

1 1 2 2 3 3
~ Cg — Chpyysi Cqg — Cpys Cq — Cpyys
6(8) _ 8 min 8 min 8 min

C71”“” - c'}m'n’ 072”“95 - c?nin 7 C%W«w - C:;)nin
_(6-03-03-0
" \9-0'9-0"9-0
_ (Z 1 1)
S \3'373/°
Then, we form a graph G’ = (V, E, ¢/) with ¢ (i) represents the additive weighting cost

for vertex i. The ¢ (i) for vertex i is calculated by ¢ (i) = w[é(i)]” = 22:1 wy, . For
example, ¢’ (8) is given by

=il = St = 5 (2) o 50+ 5 -5

In Phase 1, (g) = 10 shortest paths linking all pairs of checkpoints in A are gener-
ated based on graph G’. The details of these paths are shown in Table 1. The process
is followed by constructing a complete graph G (Figure 5) using the paths generated
in Table 1.

Table 1: Shortest paths between all pair of checkpoints i, j € A in graph G’ and corresponding
edge cost in G .

Vertex pair Minimum cost path (7 ) CI{_J- Ck(i,7)
17,57 Z17,18,4,5,21,22,8,9,25,41,57 > 193/90  41/9
17,149 < 17,31,46,61, 76, 91, 106, 122, 137, 153, 169, 185,201,  547/90  97/18

202,203, 189, 205, 191,177,163, 149 >
17,153 < 17,31, 46,61, 76,91, 106, 122, 137, 153 > 46/45 37/45
17,219 < 17,31, 46,61, 76,91, 106, 122, 137, 153, 169, 185,201,  18/5 89/30
202, 218,219 >
57,149 < 57,73,89,105,120, 135,149 > 161/30 172/45
57,153 < 57,71,85,99, 113,127, 141, 155, 169, 153 > 31/5 463/90
57,219 < 57,71,85,99, 113, 127, 141, 155, 171, 187,203,219 >  709/90  115/18
149, 153 < 149,163, 177, 191, 205, 189, 203, 202, 201, 185, 169, 47/9 22/5
153 >
149, 219 < 149,163,177, 191, 205, 219 > 29/9 59/30
153,219 < 153,169, 185,201, 202, 218, 219 > 247/90  89/45

In Phase 2, we implement RNNA to find the least cost cycle which begins with
checkpoint 4 for all ¢ € A. In this example, we set cg (s,t) = —7. This is to ensure that
during the RNNA process the edge (s,t) will always be selected, thus making all the
cycles generated contain edge (s,t). In the RNNA process, NNA was repeated |A| =5
times. The list of least cost cycle which begins at different checkpoint is tabulated in
Table 2. Also, the cycles generated are shown in Figure 6.
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Fig. 5: Complete graph G constructed using the vertex pairs in Table 1.

Table 2: Shortest cycles that starts with all checkpoints i € A in complete graph G and it’s
corresponding complete path.

Starting Minimum cost cycle Cé{yc(i) Corresponding path Cft
point (i) (Cyc(2)) (Is,¢)
17 < 17,219,149,57,153,17 > 71/10 < 17,153,57,149,219 > 141/10
57 < 57,149,219,17,153,57 > 71/10 < 17,153,57,149,219 > 141/10
149 < 149,219,17,153,57,149 > 71/10 < 17,153,57,149,219 > 141/10
153 < 153,17,219, 149, 57,153 > 71/10 < 17,153,57,149,219 > 141/10
219 < 219,17,153, 149, 57,219 > 97/9 < 17,153,149,57,219 > 160/9

V\ /o
\
\‘ .
\172/45
37/45\ \
\ \
PRI i
\\ 15/18 _ 7
8945 N // 5930
2197
(a) Cyc(17), Cyc(57), Cyc(149), Cyc(153) (b) Cyc(219)
Fig. 6: Cycles Cyc(i) in Gg with ck(s,t) = —T7 generated using RNNA for ¢ =

17,57,149,153,219 (dashed lines). Note that by removing edge (s,t) = (17,219) the cycles
turn into paths that passes through all the checkpoints with endpoints s and ¢.

From Table 2, we select the Cyc(i) with least ngc(i)’ which is Cyc(17) (Fig-
ure 6(a)) with cost C’ft = 141/10. In cases where there are multiple Cyc(i) with
minimum ngc(i), we randomly select one. Then, the edge (17,219) was removed to
form a path II17219 =< 17,153,57,149,219 >. This path corresponds to the path
17,153 D T153,57 D 757,149 P T149,219 in graph G. By tracing the path on the simulated
terrain, we obtain the complete path as shown in Figures 7 and 8. The total cost for the

complete path generated can be calculated by adding up the costs of all the traversed
cells, which is (141, 82,118).
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12 3 45 6 7 8 9 10111213 14 15
L e e s B s B S S

Fig. 7: Solution path with w = (0.7,0.2,0.1) projected onto simulated terrain with checkpoint
visiting sequence of s — v3 —v; —v2 — t.

Traversing Time
0 15

Risk Level
5 10

Signal Interference Level
15 5 1

%44 N

o
x-x-a(-:-aea(-F -
* % [

\‘\ B

2E *

Fig. 8: Solution path for w = (0.7,0.2,0.1) projected onto each attribute grid, with total cost
(141, 82,118).

4.2 Computational Experiment

In this section, seven instances of computational experiments are conducted on the
same simulated terrain with different weight combinations. The effect of different weight
assignments on solution paths that produced are observed. Seven weight combinations
are used, which are (1,0,0),(0,1,0),(0,0,1),(0.33,0.33,0.34), (0.5,0.5,0), (0.5,0,0.5),
and (0,0.5,0.5). The first three instances represent prioritizing a single attribute. The
fourth instance represents equal priority for all attributes. Finally, the last three in-
stances represent equally prioritizing two of the three attributes. The complete paths
generated using these weight combinations are shown in Figure 9(a)- 8(g).
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Traversing Time Risk Level Signal Interference Level
1 5 10 15 1 5 10 15 1 5 10 15
3 i : .
s S
* *
* *
* 5H%
* *
x| *
x| *
* *
* 10+ *
Vi * *
* *
*
*
15}, t

(a) w = (1,0,0), vertex visiting sequence: s — v3 — v1 — v2 — t, solution cost (141, 82,118)

Traversing Time Risk Level Signal Interference Level
1 5 10 15 1 5 10 1 1 5 10 15

@

* * %
*

(b) w = (0,1,0), vertex visiting sequence: s — v1 — va — v3 — t, solution cost (184, 65, 146)

Traversing Time Risk Level Signal Interference Level
1 5 10 15 1 10 15 1 5 10 15

1H * * %

(¢) w = (0,0, 1), vertex visiting sequence: s — vg — v1 — v2 — t, solution cost (166,85, 109).

Traversing Time Risk Level Signal Interference Level
5 10 15 10 15 1 5 10 15

TH % % 1F *  k x RIS
* * *
* * *
* * *
5F*% S5H* *
* * *
x| * *
x| * *
= K3
101 % 10H
V3
*
154 151 t
(d) w = (0.33,0.33,0.34), vertex visiting sequence: s — v3 — v1 — va — t, solution cost
(148,74,110).
Traversing Time Risk Level Signal Interference Level
1 5 10 15 1 10 15 1 5 10 15
s
*
*
5H*
*
*
*
*
10 %
L%
15

(e) w = (0.5,0,0.5), vertex visiting sequence: s — vg — vy — v — t, solution cost (143,92,111)
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(f) w = (0,0.5,0.5), vertex visiting sequence: s — vz — v1 — va — ¢, solution cost (153,74, 109).

Traversing Time Risk Level Signal Interference Level
5 10 15 5 10 15 1 5 10 15

10 * %k
*

EIE IR IR AR

(g) w = (0.5,0.5,0), vertex visiting sequence: s — v3 — v1 — v2 — t, solution cost (149, 73,119).

Fig. 8: Complete paths for different weight combinations.

In Figure 9(a)- 8(c), the weight combinations are such that only one attribute is
prioritized per instance. Thus, the traversing path tends to only avoid entering into
high cost region for the prioritized attribute map. Hence, each complete solution path
generated has the least total cost for prioritized attribute. For problem setting with
w = (0.33,0.33,0.34) in Figure 8(d), the complete solution path is very similar to
the solution path generated in problem setting w = (0,0, 1) in Figure 8(c), except for
the partial paths 7s v, and 7y,,0, Where the paths traverse the cells at the border of
the grid. This is because in w = (0.33,0.33,0.34) the three attributes are given equal
priority. Thus the generated solution path tends to avoid high cost regions in all three
attribute maps as much as possible.

On the other hand, Figure 8(e)- 8(g) shows the solution paths generated with re-
spect to w = (0.5,0,0.5),(0,0.5,0.5) and (0.5,0.5,0) respectively, where equal pri-
ority are given to two of the three attributes in each instance. We observed that
w = (0.5,0,0.5) and w = (1,0,0) gives very similar solution paths. This implies that
giving the third attribute equal weight to the first attribute does not affect the solution
path by much. Note that the high cost region for attribute 1 and 3 has significant over-
lap, especially in the upper right corner. We belief that this, along with the positioning
of the checkpoints contribute to the observed phenomena. This behavior can also be
seen for w = (0,0.5,0.5) and w = (0,0, 1).

However, note that in Figure 8(g) the solution path generated from w = (0.5, 0.5,0)
is not similar to solutions for problem setting w = (1,0, 0) as well as w = (0, 1,0) which
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is unusual. This is possibly due to the position of checkpoint v; which is located at
high cost region in map of first attribute but in low cost region in map of the second
attribute. In such situation, the solution path needs to pass through the region with
low costs in both first and second attributes as equal priorities are placed on both first
and second attributes.

Also, note that the cost of the solution path generated in problem setting with
w = (0,0,1) is dominated by solution path in problem setting w = (0,0.5,0.5). This
is due to the arbitrary selection of a partial path when there are multiple partial paths
with similar minimum cost exists in the graph in Phase 1 of our proposed algorithm. In
single criteria optimization problem, the objective is focused on finding a solution with
the minimum cost, rather than finding all possible solutions that have the minimum
cost. Thus, when there exist multiple solutions that gives the same least cost, the
solution is selected arbitrarily. However, when a multicriteria optimization problem is
transformed into a single criteria optimization problem, all possible solutions relative to
the minimum single criteria cost must be identified in order to eliminate the non-Pareto
optimal solutions. Thus, if a path is arbitrarily chosen when multiple solution paths
with similar lowest costs exist, we might end up choosing a path which is non-Pareto
optimal. Hence, an efficient way to find Pareto optimal solutions among all possible
solution paths with minimum costs exists is currently being studied.

5 Conclusion

In this paper, we studied the multiple criteria GPP problem of UCV where the terrain
map was represented on a grid. Our extension to the two phase heuristic algorithm
proposed in [10] was based on the additive weighting method. Our multicriteria opti-
mization problem was transformed into a single criteria optimization problem and the
GPP problem was modeled as an s-t traveling salesman path problem (stTSPP). We
performed 7 instances of computational experiments on the same terrain with different
attributes weight combinations.

We found that the positioning of the checkpoints as well as the high cost regions for
each attributes affects the solution path obtained. We also observed that our method
could generate solutions that were non-Pareto optimal due to solving our multicrite-
ria problem using a method suited to single criteria problems. Improvements such as
generating all least cost path and performing dominance checking can be made to the
current solution method.

This research can be extended in several ways. For example, we may consider
GPP in real time, as environment factors are related to each other and dynamic. In
such cases, each cost factor is represented by functions instead of constants. Also,
we may consider GPP involving multiple UCVs, where multiple UCVs with similar (or
different) capabilities are to be assigned in the path planning process. This is similar to
multiple traveling salesman problem. Also, we may consider GPP of UCV in clustered
form, where a UCV travels to multiple sites in a region before visiting the next nearest
regions. This can be formulated into clustered TSP.
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Optimal Interdiction of Vehicle Routing on a Dynamic
Network

Maximilian Moll - Stefan Pickl - Manon Raap -
Martin Zsifkovits

Abstract Network interdiction problems are often defined on a network with instantaneous
flow. In vehicle routing applications, however, the flow is time dependent instead of instan-
taneous. Moreover, the properties of a transportation network are likely to vary over time
and, hence, such a network is dynamic. In this work, we consider the extension of a static
network interdiction problem to a dynamic network. To solve this problem, we propose an
efficient solution by means of complementary slackness constraints, a reformulation of the
dynamic network to a static time-expanded network, and finally a linearization of compli-
cating non-convex constrains. The result consists of a mixed integer linear programming
formulation. We show the applicability of this method in a computational experiment with
two small but significant examples.

1 Introduction

We consider a Stackelberg game on a dynamic network, in which the player moving first
tries to reduce capacities on edges to best miminize the obtainable profit of the second
moving player, who tries to maximize profit, by solving a min-cost-flow problem. The latter
can be seen as model for a company, who can choose to deliver goods to various distribution
points up to a certain demand from various sources. The network under consideration is
dynamic in the sense that edge traversal times and costs are variant and the reward obtained
by delivering commodities is time dependent, such that e.g. late delivery is penalized. It
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should be noted, that the we assume that for each destination there is only one commodity,
making it essentially a single commodity problem. In this paper we do not assume an upper-
bound on the number of vehicles that would be required to implement the optimal solution
obtained, but this extension could be made without too much work. This is an extension of
the static network interdiction problem [1] to a dynamic network with time horizon 7.

The problem of optimal routing of a fleet of transportation vehicles has been first pro-
posed in an abstract manner by Ford and Fulkerson [2] as the maximal flow through a net-
work. The following approaches for the interdiction of such a flow exist: Wood [3] shows
that the problem is NP-complete and proposes integer models for variations of the problem
on a static network. Israeli and Wood [4] propose a mixed integer programming formulation
to maximize the shortest path from a source to a sink and develop more efficient decompo-
sition algorithms, e.g. an enhanced Benders’ decomposition method. Royset and Wood [5]
consider a bi-objective version of the problem: minimizing total interdiction cost and mini-
mizing maximum flow. They propose a branch-and-bound method exploiting Lagrangian re-
laxation for solving the problem. Wood [6] provides an overview of basic theoretical models
and solution techniques for bilevel network interdiction. The problem extension of optimal
interdiction of a flow on a dynamic network has been studied in the following works. Lun-
day and Sherali [7] propose a mixed integer non-linear problem formulation for a dynamic
network interdiction problem that can be solved directly using a commercial solver or by a
proposed heuristic. Szeto and Lo [8] consider time variant network properties and propose
models and algorithms applied to not only flow interdiction games but to an entire class
of Stackelberg games on networks. Rad and Kakhki [9] consider the problem with variant
traversal times for each edge. They present a new formulation based on the concept of Tem-
porally Repeated Flow to interrupt the flow of a single commodity and solve the problem
using a Benders’ decomposition approach.

In this work, we assume a fleet of vehicles to transport multiple commodities on a net-
work with variant edge traversal times and time dependent delivery rewards. The proposed
method for optimal interdiction consists of a mixed integer linear program, which can be
solved efficiently using a commercial solver. It is easy to implement as the need for de-
composition algorithms is omitted. Furthermore, optimal solutions are found as opposed to
heuristic solution methods.

The remainder of this paper is structured as follows. First, a formal description of the
problem is given in section 2. The proposed method for optimal flow interdiction on a dy-
namic network is then presented in section 3. Computational experiments are described in
section 4 and, finally, this paper is concluded in section 5.

2 Problem Description

Let T ={l,...,T} be the makespan defined by 7. The dynamic network

N =(V,Vy,V_,E,w,T,d,c,r) consists of the directed graph (V, E), capacities w;; > 0, (i, j) €
E, a transit times 7;; € T, (i, j) € E, demands d; > 0,i € V., costs at each time ¢;;(f) >
0,(i,j) € E,t € T, and rewards at each time r;(¢) > 0,i € V., € T. Here V_ C V is the set of
possible source nodes and V.; C V the set of sink nodes. Intermediate nodes are referred to by
V. =V \(V_UV,). We aim to find an optimal interdiction plan ¢;;(t) € N, (i,j) € E,t € T
that minimizes the maximally obtainable profit, i.e. the difference of the sums of rewards
and costs. The latter is the solution to the min-cost-flow problem from sinks to sources, re-
stricted by capacities and demand and subject to costs and rewards. Here, an interdiction
plan indicates the amount by which the capacities w;; are reduced on each edge and at each
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point in time. To obtain a well-formulated problem with a non-trivial solution, the sum of
possible alterations to the capacities is limited by a fraction f of the sum of all capacities.

3 Dynamic Network Interdiction

We propose an efficient method to find an optimal interdiction plan on a dynamic network
in this section. First, a model for finding a routing of transportation vehicles that maximizes
the cumulative reward for a given fixed interdiction plan ¢ is presented in subsection 3.1.
Then, a time expended network is constructed in subsection 3.2, such that the problem of
optimal interdiction can be solved by means of the model presented in subsection 3.3. Fi-
nally, a linearization of the model is proposed in subsection 3.4, to solve the problem more
efficiently.

3.1 Model for Optimal Dynamic Network Flow

The dynamic routing of transportation vehicles is modelled as flow x;;(¢) € No, (i, j) €E,t €
T. In order to find an optimal flow, we add an artificial super source v and super sink v; to
the network .4, as well as artificial edges E,y = E_ UE U (v1,vp). Here, let E_ = {(vo,i) :
i € V_} with cost ¢, ;(t) = 0 and capacity w,,, ; = co. Furthermore, let £, = {(i,v) :i € V. }
with cost ¢;y, (t) = —r;(t) and capacity w,, ; = d;, which reduces the problem formulation
to just costs and capacities. The cost on edge (vi,vp) is zero and its capacity is infinite.
We formulate the problem of finding a routing of transportation vehicles that minimizes the
costs for a given fixed interdiction plan (g;;) as a circulation problem:

min Z Z X,‘j(l)cij(l‘) (H

teT (i,j)GEUEa”

T T
S.t. Z Z Xij(l)— Z ZXJ','([—TJ',')ZO VieV 2)
Ji(i,j)EEUEqy; t=0 J:(ji) EEUEy 1=Tji
xij (1) < wij —qij(t) V(i,j)e ENteT ()
Y xij(t) < wij V(i, ) € Ean 4)
1€T
xij(t) >0 V(i,j) € EUEy Nt €T

&)

The objective in (1) is to minimize the cumulative routing costs over time and the set
of traveled edges. The constraints in (2) ensure the flow preservation at each time step. The
capacity constraints in (3) ensure that the flow does not exceed the interdicted capacity.
Finally, the constraints in (4) are introduced to ensure that the cumulative delivered com-
modities over time do not exceed the demand.

3.2 Optimal Flow on the Time Expanded Network

An established method to tackle an optimal flow problem in a dynamic network is to reduce
it to a similar problem on the time expanded network [10]. The basic procedure is to generate
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replica of each node for all time steps and connect the edges according to E and 7; this is
not done for vg and v;. Furthermore, extra care needs to be taken when treating the nodes in
V... While they are replicated for each timestep as well, a new set of nodes VIZ needs to be
generated, which in essence is a copy of V., where we denote the new node corresponding
toieVybyv € Vl'z. Edges are added between i; € Vf and vy; € V[Z with ¢;, ,,, = —ri(1),
Wi, v; = °, and between vy; € VIZ and vy with ¢,; ,, =0, wy, ,, = d;. This ensures that the
demand remains valid across all time steps, while the reward is time dependent. The time
expanded network .47 is then constructed along the lines presented by [10] as follows:

V_g ={i:ieViteT} qi]%t> ==gqi(t) for (i,j) € E

Ve i=liieVo,re Ty d = djj for (i, ) € Ean

v .:v{z,.zev*,reT} r,’,7() i=rij(t) for (i, j) € Ean

Vo = Vo . .

V‘ly =V :{(lhjt-%‘r,'./')v(la])€E7OSIST7

V7=V Tu}U{(luitﬂ)iiG_V,0§7f<T}
v7 .= VfUV;?UVvangfUVIZ 77 :={(vo,ir), for I evz }

7 .. E_’F = {(i,v1i), forz,EV }
wy; i=wyj for (i, j) €E B

3 o E1+ ={(i,v1), forz€V+}
Cijin = cij(t) for (i, ) € E EZJ, .= E7 UE7 U (v1,v0) UE{,

art *

The optimal flow circulation problem on the time expanded network is then formulated

as:
min Z Xijc 17 6)
(i.j)€ET UET,

S.t. Z Xij— Z Xji = 0 Vie V7 (@)

(i,j)eEuE,f{t ()EET UE,
j<wi —q;] v(i,j) € E7 ®)
xij < w;? V(i,j) €E, ©
xij >0 V(i,j) e E7 UEZ, (10)

This problem formulation is very similar to the formulation for the problem on the dynamic
network (1)-(5). The single difference is that the time component can be omitted and we
yield exactly the formulation as presented by [1] for the problem on a static network. In the
next subsection, we drop the invariably of the interdiction plan g7 and present a model that
yields an optimal interdiction plan.

3.3 Model for Dynamic Network Interdiction

First, associate dual variables A = {A; : i € V7 } with the constraints in (7), dual variables
w=A{uj:(ije€E 7 Uan,,} with the constraints in (8) and (9). Furthermore, add slack

variables Z(/> to the left hand side of each constraint in (8) and (9) to bring (6)-(10) in stan-
dard form. By formulation of the dual of (6)-(10) as presented by [1] and by complementary
slackness, the constraints (12)-(17) are the optimality conditions for x,A and u. Hence, a
feasible solution x,A and u that maximizes the profit of the fleet is optimal if these condi-
tions hold. An optimal interdiction plan can then be obtained by solving the following mixed
integer nonlinear program (MINLP):

-62 -



8th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2017)
5-8 December 2017, Kuala Lumpur, Malaysia

max Z x,-jc;? (11)
(i.))EE7 UE],
.. Y xi- Y xi=0 viev” (12)
(i,/))EEUE7, (j,i)eEZ UE7,
xijt ) =w] —qi v(i,j) € E7 (13)
Xty =w] v(i,j) € EZ, (14)
NNty ran) =¢f V(i,j) e E7UEZ,  (15)
wijz) =0 V(i,j) € E7UEZ,  (16)
iz =0 V(i,j) € E7UEZ,  (I7)
Y oai<B Y w] (18)
(i,/))eEZ (i,j))eEZ
a2l >0 V(i,j)€e EZUEZ,  (19)
pij <0 v(i,j) e E7 UEZ, (20)
A €R viev? 1)
qij € No v(i,j) e E7 (22)

Here, the objective (11) is to minimize the profit of the fleet. Constraints (12)-(17) are the
optimality conditions that ensure that the flow x is indeed the optimal response of the fleet
to the interdiction plan g. Constraint (18) ensures that the total interdiction does not exceed
a given fraction 8 of the cumulative network capacity.

It should be noted that in this formulation wg and g;; have to be interpreted as being
checked when entering the edge at the given time, not as being valid at this point in time
for the entire flow on the edge. If that were the intention, constraint (14) would need to be

replaced by
T,'j*l
Y xije—s)+a) =w] —q; V(.j)€E7,
s=0
and constraint (15) would need to be adjusted accordingly.

3.4 Optimal Dynamic Network Interdiction

A mixed integer non-linear problem is difficult to solve in general. To solve the MINLP in
(11)-(22) more efficiently, we propose a new formulation containing only linear constraints.
The two sets of constraints in (16) and (17) are the quadratic constraints which will be
replaced by a total of six linear sets of constraints. To this end, four binary auxiliary decision
variables a;;,d; j,ag’j,a;’j’ € {0,1} are introduced. The derivation of the linear constraints is
explained in detail by [1]. The two original quadratic constraints are replaced by the six
resulting linear constraints in (28)-(33) in the following mixed integer linear programming
(MILP) formulation:

max Z X; jcg (23)
(i,/)eE7 UEZ,
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s.t. Y x—- Y xi=0 viev? (24)
(iL/)EETUET,  (ji)eE7 UE],
xij+ 2l =w] —qy W(i.j) € E7 25)
x,»,»+z§}> =w; v(i,j) € E;y (26)
Ai—Aj +Mij+2,(;) =ci] v(i,j) € E7 UE, 27)
— ij — <m9x 7 I) a;j <0 V(i,j) € ETUE],  (28)
&) —wildl; <0 V(i,j) € E7UEZ  (29)
aij+aj; <1 V(i,j) € ETUE],  (30)
xij—widl; <0 V(i,j) e EZUEZ,  (31)
2~ <3migx\rl‘?| + ,f) <0 V(i,j) e E7UEZ,  (32)
afi+aj <1 V(i,j) e E7UEZ,  (33)
Y a<B Y wi (34)
(i.j)€E7 (i.j)€E7
el >0 V(i,j) e E7UEZ  (35)
i <0 V(i,j) e EZUEZ,  (36)
A €R viev? (37)
gij € No v(i,j) € E7 (38)
aij.ajj,a;,ajf €{0,1} v(i,j) e E7 UE7, (39)

Here, the objective (23) is still to minimize the profit of the fleet. The constraints in
(24)-(33) are the linear optimality conditions that ensure that the flow x is indeed the opti-
mal response of the fleet to the interdiction plan g. Finally, the constraint (34) did not change
and remains the budget constraint. Reformulation of the problem in linear terms results in
a significant reduction in run time, especially when solving the problem with a commer-
cial solver. The computational experiments in the next section will show the efficiency and
applicability of the proposed method.

4 Computational Experiments

The computational experiment was performed on an Intel(R) Core(TM) i7-5600U CPU pro-
cessor with 2.6 GHz and a usable memory of 7.7 GB. The simulation platform is written in
Python, using IBM Cplex with default parameter settings to solve the instances of the pro-
posed MILP. The first instance studied can be found in Figure 1, where each edge (i, j) is
labeled with 7; j,w; ;. The only source node is A, the only sink with a demand of 10 is H.
The values of ¢ and r can be found in table 1 and § = 0.1. The costs follow one of three
structures: they are either constant in time, or have two or three phases - like on and off peak
- or they are alternating. All of these yield different implications for the exact schedule of
the routes. The solution can be found in figure 2, where dashed edges indicate interruption
and 5(2 —4),3(0— 1) should be read as ”‘a flow of 5 is leaving at every time step from 2 to
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4, while the capacity is reduced by 3 for flow starting at time O up to time 1”’. In the case
of disruptions on an edge at just one point in time, the endpoint is omitted. It can be seen
that instead of blocking the same edges for every time step, the two best routes are being
blocked at the earliest time, they would be of use, as to delay the flow. Due to the decreasing
structure of the rewards, this increases the overall costs. The decay in rewards is not rapid
enough though, to make it worth going through the center.

23 H

3,5

Fig. 1 The network for example 1 with 7; j,w; ; on each edge.

The second example chosen can be found in figure 3 and table 2. It is a reduced version
of the first example to be able to run it at two different timescales. The longer version runs
for 12 time steps and the solution can be found in figure 4. Of particular interest is here, that
the edge (E,F) could not be interrupted fully at time 9, which is exploited by the optimal
flow. For the shorter version, the problem is run for 8 time steps. The costs and rewards are
the ones in table 2 without brackets, § = 0.05 and the solution can be found in figure 5. It
can be seen that in this instance all the flow is routed through the lower half of the network.
And that this time the edge (C,F) is blocked as much as possible. The reason to reduce
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Table 1 The values of ¢; j(¢) and rg(¢) for example 1.

r | (AB) (AC (AD) (AG (BD) (BE BF (CF ®OH EH (EE ((EH GH | g
1 1 1 4 5 3 1 2 1 4 1 2 2 4 20
2 2 1 4 5 4 1 2 1 4 1 2 2 4 20
3 1 1 4 5 3 1 2 1 4 1 2 2 5 20
4 2 1 4 4 4 1 2 2 5 2 2 1 5 20
5 1 2 4 4 3 1 2 2 5 2 2 1 5 20
6 2 2 4 4 4 1 2 2 5 2 2 1 4 19
7 1 2 3 1 2 1 5 1 2 2 4 18
8 2 2 1 2 1 1 2 2 17
9 16
10 15
- ~ ~ . .
Sa
~
~
-~
5(2),0 0,0 ‘s‘
5(6),5(4-5)
N
‘\
- 0,1(0-3) - e 0,0
00 0,0 0,0 0,0
.
.
.
‘.
A Y
. C 0,0 H F 0,0 10(9)
© [
5(2),5(0)
N R
N 5(6),5(5)
s .~ e
~. . "

Fig. 2 The solution for example one. Dashed edges indicate interruptions, while thicker errors indicate flow.
Further more and edge with 2(3-5),4(1-2) has a flow of 2 starting on each of the time steps 3-5 and has a
capacity reduction of 4 at each the beginning of each time step 1,2.

B was that with the original value the interdiction was sufficiently potent to suppress flow
all together. More interesting however is the comparison of the run times. While example 1
could be solved in 33.07s the short version of example 2 took just 0.28s. This might be not
too surprising, since the latter is smaller and shorter. However, in the long version of just 4
more time steps, the solution time increases to 567.11s, demonstrating the massive increase
due to rolling out the network for more time steps.
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D
4,5
4,5 34
A 23 /B\ 23 /E\ 2,3 F
N
23 2,3
32

Fig. 3 The network for example 2 with 7; j,w; ; on each edge.

Table 2 The values of ¢; j(¢) and rg(r) for example 2.

t | (AB) (AC (D (BD) (BE (CE (CF ®OF &P | ry
1 1 1 4 3 1 2 2 4 1 15
2 2 1 4 4 1 2 2 4 1 15
3 1 1 4 3 1 2 o) @) D 15
4 2 1 4 4 1 2 3 @) 2 15
5 1 1 @) 3 1 2 3 5 2 14
6 2 1 ) @) 1 2 3) 5 @ | 14
7 (D 2 “4) (3) (1) (2) (3) 5 1 13
8 () 2 “4) “4) (1) ) 2 )] 1 (13)
9 (1) ) 3) (1) ) 2) (1) 12
10 2 2 (€8] 2) (€8] (12)
11 11
12 (11)
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S % ) 3(4-5),0

3(0),0 3(2),0

3000 00 - == 209).{3(4-8), 1(9)} == ==

2(5-6),0 2(7),0 N4

\5 28)202-7)

Fig. 4 The solution for the 12 step version of example two. Dashed edges indicate interruptions, while thicker
errors indicate flow. Further more and edge with 2(3-5),4(1-2) has a flow of 2 starting on each of the time
steps 3-5 and has a capacity reduction of 4 at each the beginning of each time step 1,2.

/@/—\ 0,0
0,0 0.0

3(1),0 e 3(3),0 cmmem=a3(5)3d)mmmmmm-

3(8-9)
4(11)

1(6)
3(7)

1(1),0 0,0 Pae

i d

13),{22.4),13)}

-
L ey

Fig. 5 The solution for the 8 step version of example two. Dashed edges indicate interruptions, while thicker
errors indicate flow. Further more and edge with 2(3-5),4(1-2) has a flow of 2 starting on each of the time
steps 3-5 and has a capacity reduction of 4 at each the beginning of each time step 1,2.

s
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5 Conclusion

In this paper we have extended our previous work on network interdiction by making the
underlying network dynamic. In order to be able to transfer the approach, the network is
being rolled out in time first, to obtain a static network again. The experiments not only
show, that this approach works, but also demonstrate that this procedure incurs a rather high
computational cost.

Future work should focus on finding a more efficient way to find the solution in problems
with larger time horizons to make this approach more relevant to practical applications. This
could go several ways. If the considered time frame is for example much longer than the
longest time it takes from any source to any sink, then the problem could be decomposed to
a set of potentially overlapping episodes of shorter length. Another option would be to try
to exploit this kind of symmetry by decomposition methods. Finally, it can be considered
to try a completely different approach like dynamic programming or some form of hybrid
method.
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Evolving Adaptive Evolutionary Algorithms

Ayman Srour e Patrick De Causmaecker.

Abstract This paper presents a Grammatical Evolution framework for the automatic design of
Adaptive Evolutionary Algorithms. The grammar adopted by this framework can generate a
novel adaptive parameter control strategy, aiming to evolve the design of evolutionary
algorithms. The Travelling Salesman Problem is used to investigate the potential of the proposed
framework to evolve the adaptive evolutionary algorithms. Results show that the proposed
framework is capable of not only generating new adaptive evolutionary algorithms but also
confirms that automating the design of adaptive evolutionary algorithm can outperform the
standard evolutionary algorithm.

1 Introduction

Evolutionary Algorithms (EAS), as there are genetic algorithms, genetic programming and
evolution strategy based methods, are general population-based metaheuristics inspired by
biological evolution and natural selection [1]. When applying EAs to optimization problems
many different parameter configurations have to be set to achieve optimal performance. The
choice of different genetic operators and their relative rates is usually based on experience. It
has been argued that different parameter values may be optimal at different optimization stages
[2-4], which makes the current research more focused on tackling the issue by using adaptive
parameter control. Adaptive Parameter Control (APC) is used to tune the parameters in an online
manner and during the algorithm execution by considering feedback from an EA run - such as
solution quality- to monitor the algorithm performance and adjust the parameter values for future
iterations.

Recently, EA parameter control has been widely studied, and many of APC methods have
been proposed in the literature [5, 6]. The variation in these methods (regarding its performance
and structure) makes the choice of suitable APC methods for a specific problem or instance non-
trivial, as there exists no general optimal APC method for EAs. As a consequence, for EAs, the
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optimal APC method can considerably vary depending on the problem or instance at hand. Some
of the previous work ([7] and [8]) tried to combine different APC methods to improve EA
performance. Several alternative combinations of APC methods remain unexplored. In the
context of EAs, reference [6] has presented a vital survey of parameter control methods. The
authors concluded that more research on the combination of different control mechanisms could
be performed and that developing a generic framework for APC could be helpful.

Reference [5] proposes a generic model of the state-of-the-art APC methods based on a
comprehensive review of the literature. The authors distinguish between the optimization
process and the control process of the Adaptive Evolutionary Algorithms (AdEA). The control
process is further divided into four components, namely, feedback collection, effect assessment,
quality attribution, and selection (see section I1-A). Each component represents a stage of the
parameter control accompanying with several possible adaptive strategies for each stage.
Considering this model, the architecture of every AdEA can be mapped into the four
components. Thus, a complete design on any AdEA should have at least one strategy for each
component, and each strategy can be implemented by using one of many predefined rules or
methods. In fact, we can use the model to facilitate the design of any new AdEA, but it is still
time-consuming to perform this task manually. Several non-trivial selections or combinations of
the most suitable variants of strategies (and so its rules) are needed to optimally specify each
component with respect to the problem at hand.

In recent years, several automatic designs of the algorithm were presented to overcome this
limitation. Reported in literature, a range of approaches are used to automate the algorithm
design. An example of automatic design, Grammatical Evolution (GE) has been used to evolve
an algorithm such as presented by [9] for evolving data mining algorithms, and [10] used GE for
evolving new local search algorithms for the bin-baking problem. More recently, GE has been
used to evolve the design of EAs for solving Royal Road Functions [11], Integration and Test
Order problems [12].

In this paper, we propose a Grammatical Evolution framework to evolve the design of
AdEA. GE automates the design of AdEA by defining a grammar guiding the selection of an
APC strategy for different EA parameters and defining the corresponding implementations. The
main aim of the automatic design of AJEA is to surrogate the human design leading to significant
performance improvement. We introduced a set of experiments to examine the evolved AJEAS
for solving the Traveling Salesman Problem (TSP).

The structure of the paper is as follows: section 2 presents related work of AJEA and the
automatic design of algorithms. In section 3 we introduce the Grammatical Evolution framework
for Adaptive Evolutionary Algorithms (GE-AdEA) including APC components description and
the grammar definition. Section 4 presents the experimental results and analyses, and finally, the
conclusion and future work are presented in section 5.

2  Background

2.1 Adaptive Parameter Control Design Model

The problem of finding optimal parameter configuration for an algorithm is a nontrivial
optimization problem. Currently, the study of techniques for automatic parameter tuning is an
active research area [5, 6, 13, 14]. One distinguishes parameter tuning and parameter control
[14]. The former assigns parameter values before algorithm execution, while the latter decides
on optimal parameter values during algorithm execution. According to [14], parameter control
can be further classified into deterministic, adaptive and self-adaptive. Deterministic parameter
control means the parameter value is assigned based on deterministic rules without further
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knowledge about the search progress. Self-adaptive parameter control combines the search of
optimal parameter values with the solution search, i.e., encodes the parameter values in the
genome to enable them to co-evolve with the solutions. According to [5], APC separates the
search for optimal parameter values from the solution search, monitors algorithm properties
during the optimization process and adjusts the parameter values accordingly. The set of
algorithm parameters that need to be tuned can be formulated as a P = {v;, v,,.., v,}, where n
denotes to the parameter numbers. Each v; has a set of values v; = {v;;, v,.., Vi } that could
be either a discrete number or intervals continues numbers. Note that m refers to the number of
values associated with each parameter v;. For example, assume that v; represents a crossover
parameter in EA, then the value v;;could be the single point crossover and the value v;, could
be the uniform crossover. However, the parameter control aims to find the best next parameter
value v;; to optimize algorithm performance.

Over the past two decades, a wide variety of APC has been proposed with several
adaptation strategies. A comprehensive study of the research direction of parameter control
methods has been shown a significant number of research conducted in the field in the recent
years [5, 6, 15, 16]. In the context of EA, more sophisticated literature reviews, such as [5, 17],
have focused on studying the design structure of the existing APC methods and tried to
decompose the APC process into several elements or components. The components that play a
role to generalize the design strategies of the most existing APC methods. Corriveau et al. 2016
[17] divides the adaptive parameter control process in EA into four essential elements, namely,
parameters involved (the type and states of the parameters involved), feedback indicators (used
to evaluate the impact of the current state of the involved parameters), credit assignment schemes
(used to convert feedback information into a suitable reward) and parameter selection rules (used
to update parameter states).

Aleti et al. 2015 [5].proposed a more sophisticated and comprehensive conceptual
model of APC which also consists of four main components. Fig. 1 illustrates the general
algorithmic flow and components involved in the AJEA [5]. The algorithm starts with a
population (initial solutions). This population is evolving during algorithm execution until the
stopping criterion is reached. The EA parameters, such as population size, genetic operators and
the probabilities of performing of the genetic operators, the number of offspring, etc., can be
adjusted by the parameter control methods. At each cycle in the optimization process, the
generated solutions are evaluated by using the fitness function(s), which provides valuable
information about the algorithm performance as a feedback to guide the parameter control
method. The feedback information can be used by effect assessment strategy to assess the cause
of a change of the properties of the solutions during the run by measuring the effects of each
parameter values on the algorithm performance. The vector of all parameter effects can be
defined asé = {e(vy1), e(vi2), ...,e(Vin), ... €(Umn,)}. The aim is to adapt the vector of

probabilities p such that the expected value of the cumulative effect E[_éT = }Lle(vij) is
maximized. The information is then used by quality attribution components to estimate the
quality of each parameter value q(vi]-). The vector of quality estimates for all parameter values
is denoted as ¢ = {q(v11), g(V12), ..., q(V1n), - Q(Vmn,,)}. However, the selection comment
will use g for selecting a good parameter value for future iterations.
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To illustrate the AAEA model, consider the Integrated-Adaptive Genetic Algorithm
(IAGA) [7] as an example. The authors adjust genetic operators and their rates. In the feedback
collection strategy, they use phenotype feedback by considering the fitness of the solutions. Two
different effect assessments have been applied, namely, best solution effect and ancestor solution
effect. A reinforcement-based rate adaptation model is applied to measure the quality of the
parameter values and can be categorized as learned quality attribution. Finally, the author used
the proportional selection of reinforcement values of the operator rates to be used in next
iterations. Considering several adaptive parameter control method for EAs in the literature [5].

We can see a degree of variation in AdEA design and a combination of some existing
strategies is also possible. However, classifying the existing AJEASs based on decomposing them
into several components and strategies can help to develop an optimized variant of AdEAS,
mainly when an automatic algorithm designed approach is used; then the task can be much
easier.

2.2 Related Work

Recently, several approaches for automating the metaheuristics design were developed,
by both researchers and practitioners. Two main approaches for automatic algorithm design have
been defined by [18], namely, top-down approach and bottom-up approach. The former one uses
a parametrized algorithmic framework to generate an algorithm by starting with a general
procedure and integrating different high-level algorithmic components [19]. On the other hand,
the bottom-up approach is used by grammar-based genetic programming [9, 10, 18]. In this
approach, the design of the algorithm is carried out by defining a context-free grammar, and the
design space is represented by a set of production rules. The advantage of this approach is the
ability to combine a valid algorithmic component in more fine-grained than top-down approach.
Reference [20] used genetic programming to design a hybrid large neighborhood search
algorithm for solving vehicle routing problems by applying crossover and mutation of a
predefined set of terms derived from the grammar. References [9, 10, 18, 21] used a grammatical
evolution [22], a variant kind of genetic programming, to generate a complete algorithm by
composing a predefined set of algorithmic components. Grammatical Evolution (GE) [22] is a
grammar-based genetic programming capable of generating a variable length code in any
language by using a leaner genuine system representation. The GE uses a Backus Naur-form
(BNF) specification language to represent a grammar which is used in genotype to phenotype
mapping process to generate a complete program from the genotype binary string.
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3 The Evolutionary Framework

As aforementioned, the EA parameter control has been studied intensively, and many parameter
control approaches have also been proposed recently. The momentum of research in this field is
still increasing because developing a new or applying an existing APC strategy for different
optimization problems is always in demand [5, 6] as literature witnesses the success of ADEAS
in many applications. In fact, developing a robust AJEA leads us to consider several issues such
as the nature of a problem, the difficulty of target instances and the decision which APC strategy
for a specific parameter in AJEA should be adopted, which is, of course, affecting the
performance of the AdEA. All of these issues also make the design of AdEA a difficult task.
The difficulty is because several APC strategies exist today and deciding the optimal among
many alternatives, for a specific problem or even for a specific problem instance, is infeasible
by considering the human design alone. Using an automatic algorithm design is an affordable
alternative approach that not only helps to reduce the difficulty of selecting the best among
several algorithm components but also can help to generate a novel algorithmic design which is
in many cases superior to the standard algorithms.

Recent research work in the literature [11, 12, 23] used the GE framework to evolve
the design of EAs. These focus on automating the design and the tuning of EA parameters
utilizing from the GE grammar to generate EAs with different architectures. In this work, the
idea of using GE to evolve AdEA has been inspired by work presented in [11, 12, 23]. Their
results confirm that GE has a capacity of generating a novel design of EAs with better
performance comparing to human design (standard EA). Therefore, the grammatical evolution
framework GE-AdEA is used to evolve AJEAs by adopting different APC strategies. The
framework is composed of two main components: GE Optimizer (GEO) and AJEA Executor
(ADEA-EX). The task of GE-O is to evolve individuals that encode effective APC strategies for
AdEA, whereas AdEA-EX responsible for executing many possible AJEA architectures based
on the newly generated APC strategies (GE individuals) from GEO. The component is necessary
for evaluating the generated solutions by assigning fitness to each individual by training it on
TSP problem instances.

The GE-O adopts the standard architecture of GE, which consists of a search engine, a
mapper function, and a BNF grammar. GE uses a standard genetic algorithm as its search engine
[22]. The chromosome (genotype) is represented by a variable length binary string, The gene in
each chromosome (so-called codon) has 8-bit binary values which are later decoded into an
integer (in the range between 0 to 28-1). Repeatedly, the integer values produced by a
chromosome can be used to convert all terminal to non-terminal symbols via a mapper function.
The fitness of each chromosome is then evaluated by executing its corresponding program. The
mapper function converts the genotype to phenotype by taking a binary string and BNF grammar
as input and map it to the corresponding program.

The BNF grammar should be defined according to the four adaptive parameter control
components, namely, Feedback Collection (FC), Effect Assessment (EFA), Quality Attribution
(QA) and Selection (SE). The four components have been selected based on the conceptual
model proposed by [5], and are reflecting the actual design of variant APC strategies of AAEA
in the literature. Each of these components has its own set of adaptive parameter control
strategies. These are explained as follows:

1. Feedback collection (FC): the feedback collection provides valuable information
about the algorithm performance as feedback to guide the parameter control method.
This kind of information can be processed in the feedback collection strategy, which
can measure and record a specific property of the algorithm performance during the
execution, such as phenotype/genotype quality and phenotype/genotype diversity. We
have employed several feedback collections methods. The feedback collection that is
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used in our framework has been widely used in the literature [5] and is presented in
Table 1. Note that in the proposed framework, we use Phenotype and Genotype
feedback strategies to provide information for adaptive crossover and mutation
operators effect assessment, while the Phenotype and Genotype diversity feedback

strategies are used to control crossover and mutation rates directly.

Table 1 The feedback collection strategies description used in the proposed framework

Feedback
Strategy

Description

Phenotype

Refers to the fitness function of solutions. The effect assessment will rely on
fitness value differences among solutions, i.e., best, worst average fitness

Genotype

Provides feedback information about the solution components (genome
information) of a given solution. We used a Hamming distance to measure the
distance between two solutions as follows:

n
d;j = Z i —Jkl
k=1

Phenotype
diversity

To measure the diversity in the population The population diversity measure
by [24]:

fbest - favg

curr_val =
fbest - fworst,

curr_val,ifcurr_val > prev_val

prev_val = {unchanche , else

<curr_val>2
w=|———],
prev_val

Where curr_val and prev_val represent the fitness of the current value and
previous value of the best solution, respectively.

If the value of w reaches 1.0 that means the solution population is highly
diverse.

Genotype To measure the diversity in the solution components over a set of solutions.
diversity The population diversity measured by [26]:

do= D Qiucbely?

1
avg(din) = - dix

Ny is the number of operator applications of type x. i is the current solution
and, b is the best solution generated by operator x

Effect Assessment (EFA): The parameter control utilizes the effect assessment
information to determine which parameter values will potentially perform well in future
iterations by using a specific rule. The main difference between the existing effect
assessment methods, however, is how they evaluate the success of parameter values.
For instance, the effect assessment method presented in [25] calculates the effect of the
parameters using quality differences between the generated solutions compared to their
parents, while [26] used the overall best solution and [27] used median. A brief
description of each APC component and its related strategies, adopted from [5], is
presented in Table 2
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Table 2 The effect assessment strategies description used in the proposed framework

Effect Assessment

Strategy Description

Ancestor The effect of operator X; calculated as :
G _ {fParent - fc]- ’ if fParent = fc]-
x 0 else

Where fpqren: denotes to the parent fitness, ij fitness of the child ¢; that is
generated using operator X; on generation G.

Ancestor Best The effect of operator X; calculated as :
fParent - fci

G — JAf f 2 f
SiX - fParent - fbest Parent i
0, else
Where f,.,. IS the best parent fitness used by operator X;  fpqren: IS the best

parent fitness, fe; is the fitness of the child ¢; that is generated using
operator X; on generation G.

Ancestor Median The effect of operator X; calculated as :
eG - {fmedian - fci ’ lf fmedian = fci
X 0 else

Where f.cqian IS the median parent fitness used by operator X;, fc/. is the
fitness of the child ¢; that generated using operator X; on generation G

Ancestor Worst The effect of operator X; calculated as :
el = {fcj - fworst rif fworst < fcj
s 0, else
Where f,,,,s: is the worst parent fitness used by operator X; fc/. is the
fitness of the child ¢; that generated using operator X; on generation G

Current The effect of operator X; is calculated by using the current fitness of the
children as:

eg( = fcj
Where f; is the fitness of the child ¢; that is generated using operator X; on
generation G.

Current Best The effect of operator X; calculated as :
E-G ={fbest_fci riffbest chi
X 0 else

Where f,.. is the best child fitness generated by operator X; fe; is the
fitness of the child ¢; that generated using operator X; on generation G

Current Median The effect of operator X; calculated as:
el = {fmedian - fci ’ if fmedian = fci
‘X 0 else

Where fineaian is the median child fitness generated by operator X;  f; is
the fitness of the child ¢; that generated using operator X; on generation G

Current Worst The effect of operator X; calculated as :

e-G — {fci - fworst ’ if fworsti < fci
X 0, else

Where f,,,,s: is the worst child fitness used by operator X; fe; is the fitness

of the child ; that generated using operator X; on generation G

The average effect of operator X;calculated as:
¢ Lek

ey =
Ny

3. Quality Attribution (QA): this component is built from the rules used in the effect
assessment strategy. The parameter quality attribution is useful to estimate the quality
of parameter values as it can help to choose the next parameter values. Two quality
attribution strategies adopted in our framework, namely immediate and learned quality
attribution. In the immediate quality attribution, the quality of a parameter referred
directly to the effect value of that parameter, as

a(v) = e(v) 1)
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However, in the learned quality attribution, the quality of a parameter can be measured
using accumulative information, the information from what the algorithm has learned
in the previous iteration. So the quality of any parameter can be calculated by
computing the ratio of e(v; ]-) with respect to the average effects of all parameters,
using the following equation [28]:

aw) = s p @
i 5, Operator

i=1e(V;)

4. Selection (SE): the parameter selection strategy is used to determine which of the
parameter values will be used for future iterations. In our framework, we used two
different parameter selection strategies. The first is quality proportionate which uses
parameter quality values to estimate the selection probability of each parameter value
for next iterations. The second is quality proportionate with a minimum probability
which differs from the prior one by assigning a minimum selection probability to each
parameter value to avoid missing some parameter values with inferior quality.

Q(Vi) = Q(vi) * (POperator —i* 5) -6 3)

3.1 Grammar Definition

The objective of the proposed framework is to generate an AJEA. Its grammar contains rules
that define the adaptive parameter control strategies for EA parameters and EA parameter
configuration for parameters that are not selected for adaptation; such grammar is presented in
Fig. 1. Every item placed between “<” and ‘> is a non-terminal. Items without “<” and “>”
represents terminal nodes. Everything coming after “::=” represents an option. “|” presents
alternative options that can be assigned to a specific rule. More formally, the grammar can be
formulated as a tuple <T, N, S, P>, where T denotes the terminal set (in our case represents a set
of values), N denotes the non-terminal set (a set of APC strategies and a set of EA parameters).
S is the start symbol (in our case “<Start>"). Finally, P denotes the production rules that map the
elements of N to T (in our case, the production rules that used to generate a variant kind of APC
strategies).

The rules of the presented grammar consist of all APC components and parameters that
can be used to construct a valid AJEA. Each terminal consists of a value of parameters or an
implementation of an Adaptive strategy that can be assigned to a specific parameter. For
example, “<crossover_opr>” denotes the crossover operator parameter. All options after “::=”
might be either a terminal (a value of the parameter) or non-terminal. “oxcrossover” or “@.8”
could be an example for a terminal option which is denoting that the parameter should have a
fixed value making the parameter turn to non-adaptive mode. In the other hand,
“<AdaptiveStrategy>” shown an example of a non-terminal optinon that can be used to extract
the adaptive parameter control strategy that makes crossover operators in adaptive mode.
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<Start>:=<Crossover_oprj<Crossover_rate>; <Mutation_opr:;<Mutation_rate:>
<Crossover_opr»::= <Adaptive Strategy>| OXCrossover | PMXCrossover | CycleCrossover
<Crossover_rater::= <Diversity control:| 8.5 | 8.6 | ©.7 | .8 | 8.9 | 1.8
<Mutation_oprr::= <Adaptive Strategyr| Order20ptMutator | OrderSublistMutator | ShiftMutator
<Mutation_rate»::= < Diversity contrel >| @.81 | @.82 | @.85 | .5 | 8.1 | 8.2 | 8.3 | 8.4 | 8.5
<AdaptiveStrategy>: :=<Feedback>| <Effects> | <Quality>|<Selection>
<Feedbacks: := Phenotype | Genotype
<Effects»::= Ancestor Best | Ancestor Median| Ancestor Worst |
Current| Current Best | Current Median | Current Worst
<Qualityz::=learned Quality | Immediate Quality
<5election»::=Proportionate | Proportionate_w _m_p

<Diversity contreol»::= null | Phonotype Diversity | Genotype Diversity

Fig 2 GE-AdEA grammar

4 Experiments

In this section, we study the behavior of evolving AJEAs to solve a Travelling Salesman
Problem (TSP) using GE and a grammar defined earlier. We conducted a set of empirical
evaluations using conventional EA called Simple Generational Elitist (SGE) [29], and the
evolved AdEAs by GE-AdEA. Both SGE and ADEA have been implemented based on a classical
genetic algorithm that uses a generational schema but ensures any time that the best individual
passes to the next generation. The main difference between AdEA and SGE, as shown in Fig 3,
is that AJEA uses adaptation process that implements the generated adaptive parameter control
strategies.

SGE template AdEA template
generate initial population; generate initial population;
evaluate individuals; evaluate individuals;
while termination condition not met do while termination condition not met do
select individuals select individuals
apply variation operators apply variation operators
Evaluate (offspring Population); Evaluate (offspring Population);
Replacement Replacement
end while Adaptation
return best individual in the population | end while
return best individual in the population

Fig 3 Basic template of SGE and AdEA

The evaluation is divided into two main phases 1) training phase and 2) testing phase. In the
training phase, we execute GE-AdJEA 10 times on eil76 TSP training instances from the TSPLIB
to learn the GE-AdEA to generate ten different ADEAs. The choice of the training instance was
adopted from [21]. The authors used three instances (eil76 with a uniform random distribution,
pr76 with a clustered distribution and gr96 with a random distribution). However, €il76 shows
the best training instance for learning an ACO architecture because of the probability related to
the spatial distribution which is a uniform random distribution. Furthermore, in the training
phase and to make fair a comparison between the generated algorithms and SGE, we used GE
with different grammars for automatically tuning the SGE parameters. In the testing phase, the
performance of the algorithms, the SGE and the 10 evolved AdEAs, is evaluated by conducting
several experiments using 10 standard benchmark TSP dataset ranged from 48 to 318 cities. The
experiments measure the solution fitness, the fitness that is obtained from 30 runs for each data
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set, with 10,000 iterations for each independent run. This number of iterations is required to
reach the best fitness.

For all experiments (training and testing), the Adapted EA settings are: Population size
100; Initial individuals generation: nearest neighborhood heuristic; Crossover operators: Order
Crossover (OX), Partially Matched Crossover (PMX) and Cycle Crossover (CX) with initial rate
0.9; Mutation operators: Order 2-opt mutation, sub-list mutation and shift mutation with initial
rate 0.1; Tournament selection with tournament size: 2. Similarly, the tuned SGE settings are
Population size 100; Initial individuals generation: nearest neighborhood heuristic; Crossover
operators: Order Crossover (OX) with rate 0.6; Mutation operators: shift mutation with rate 0.1;
Tournament selection with tournament size: 2. We used Java Class Library for Evolutionary
Computation (JCLEC) [29] for implementing both SGE and AdEAs, and GEVA v2.0 [30] for
GE.

4.1 Training

In this phase, GE-AdEA parameters were fixed to the values presented in Table 3 [11]. By using
these parameters, the GE-AdEA executed ten times on training instances resulting in 10 different
AdEAs (here named Algl to Algl10). Each algorithm was trained with 1000 iteration budget,
and the fitness value provided as feedback to the GE-AdEA corresponds to the best solution so
far generated by each AdEA. The limited number of runs was adopted because evaluating an EA
is a computationally intensive task. However, the best and the worst performed algorithms (as
shown in the next section) are the Alg_2 and Alg_9, respectively. Their APC strategy and
parameter settings are presented in Table 5. Due to the limited space available, Table 4 highlights
the frequency of appearance of APC strategies in the evolved AdEAs (values are in percentage).

Table 3 Parameters of GE-AJEA

Parameters Value
Population Size 100
Number of GE generations 50
One Point Crossover Probability 0.9
BitFlip Mutation 0.01
Selection Operator Tournament with size equal 3
Replacement Steady State
Number of Wraps 3
Number of Runs 10

Table 4 the frequency of evolved adaptive strategies generated from 10 GE-AdJEA runs

APC Components  Strategies Freq.
Phonotype 35%
Feedback Genotype 25%
Ancestor 5%
Ancestor Median 5%
Ancestor Worst 10 %
Effect Assessment Current 20 %
Current Best 15%
Current Median 5%
Quality Attribution  Learned 50 %
i i i i ili 0,
Selection Qual!ty_proport!onate with_min_probability 35 %
Quality _proportionate 15 %
Phenotype diversity 35%

Diversity Control Genotype diversity 1%
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Table 5 Parameters control strategy of the best and worst Evolved algorithm

Parameter Bestalg 2 Worstaig o
Crossover Adaptive{ Non adaptive {value: OX
operator Feedback collection :Genotype; Crossover}

Effect Asses. : Current Midian;
Quality attribution: Learned quality;
Selection Proportionate with min. prob.;

Crossover rate  Non adaptive {value: 0.4} Non adaptive {value: 0.9}
Mutation Adaptive{ Non adaptive {value: 2opt
Operator Feedback collection :Phenotype; mutation}

Effect Asses. : Ancestor;
Quality attribution: Learned quality;
Selection Proportionate with min. prob.;

Mutation rate  Non adaptive {value: 0.3} Non adaptive {value: 0.09}

4.2 Testing

To validate the evolved AJEAS in an optimization scenario, this section provides the comparison
results between tuned SGE and the evolved AJEASs. The testing is essential to measure the
effectiveness of the evolved algorithms in different TSP instances. Ten TSP instances were
selected to assess the performance, namely, att48, eil51, berlin52, kroA100, lin105, gr137, ul59,
d198, pr226 and 1in318.

Table 6 presents the experimental results of the tuned SGE and the evolved algorithms
on 10 TSP instances. The result values are expressed by the percentage deviation of the best
solutions generated by 10,000 iterations of all algorithms compared to the best-known solutions
of the instances. It can be seen that the results of the evolved algorithm are generally better than
SGE in most instances. From the table, we can also see an expectable degree of variation in the
performance of the evolved algorithm which is confirmed that the GE-AdEA can generate
AdEAs with different adaptive control strategies as well as with different optimization
performance. Looking at the algorithms ranking presented in Table 6 and calculated by using
the ranking method [31] based on the mean of the best fitness for each algorithm, we can see
that 2 out of 10 evolved AJEAS had a better performance when they compared with SGE.
However, the results obtained reveal that GE-AdEA can generate AdEAs with a novel adaptation
strategy and 20% of them have a superior performance comparing to SGE.

To see if there is any statistical difference between the evolved AdEAs and SGE, we
used the results of the mean fitness values obtained from the experiments in the testing phase
and examines the statistical difference using the pair-wise t-Test with a significance level
a=0.05. Table 7 demonstrates the significance of the statistical results of all datasets. A “++”
symbol denotes to the significant differences in the mean values with superior performance
comparing to SGE, “+” denotes to the significant differences in the mean values but with worst
performance comparing to SGE and finally “~” denotes to no significant difference in the mean.
Table 7 statistical results show that both Alg_1 and Alg_2 have a significant difference with
superior performance in the majority of datasets. The analysis also reveals that three of evolved
AdEAs namely Alg_3, Alg_4, and Alg_6, have a comparable or equal performance with SGE.
However, the rest, which is five evolved AdEAs, have worst performance.
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Table 6 Optimization results of evolved AJEA, with 10000 iterations for 30runs

E w Y N i il 2 “ ™ @ il 9‘,
s 0] =y =y = =y = =y =y =y =y o
2 2 < < < < < < < < < P
attds B| 124 08 310 310 160 111 088 088 052 147 216
M| 476 307 306 514 451 307 305 305 300 360 3.10
i B | 258 258 305 305 305 258 235 305 141 305 258
eils M | 415 408 423 569 437 408 385 416 412 481 464
berli B | 000 000 000 000 000 000 000 000 000 130 0.00
erlind2 11 271 333 347 476 416 333 288 225 156 508 338
. B | 141 137 141 141 292 141 141 141 141 218 141
M | 487 370 349 616 422 370 406 429 462 444 414
i B| 148 260 172 389 197 157 237 189 137 508 172
in105 M| 530 521 448 783 590 521 551 540 473 695 4.89
o137 B | 778 1013 891 11.99 1041 1096 847 1110 976 12.03 10.29
M | 11.87 1399 1257 1525 1228 1399 1329 1501 1543 16.88 16.54
U150 B | 10.05 1030 9.83 1020 9.83 887 10.08 9.88 1049 11.30 10.64
M | 1110 10.86 1050 11.73 1099 10.86 11.32 1155 11.84 12.64 11.86
d198 B| 571 731 514 501 528 564 59 700 645 639 691
M| 74 728 650 715 617 728 751 870 919 947 838
or226 B | 401 612 345 546 357 418 405 708 716 745 6.35
M| 607 731 554 788 58 731 738 926 931 890 1013
lina18 B | 11.67 1094 10.85 9.89 11.09 1208 1252 1237 13.08 1272 11.67
M | 11.04 1167 1094 1085 9.89 11.09 1208 1252 1237 13.08 12.72
Algorithm B | 3.6 6.2 3.0 6.4 6.0 49 5.0 7.4 5.6 9.9 8.0
ranking M | 46 39 33 8.4 5.0 49 49 6.4 61 101 83
Table 7 Results of the pair-wise t-Test at a significance level « = 0.05
Problem SCE-  SGE-  SGE-  SGE-  SGE- SGE- SGE- SGE- SGE-  SGE-
Alg_.1 Alg2 Alg.3 Alg4 Alg5 Alg6 Alg7 Alg8 Alg9 Alg 10
att48 ++ ++ ~ ++ ++ ++ ~ ++ ++ ++
eil51 ~ + + + ++ ++ + ~ + +
berlin52 ~ + + + + ~ ~ ~ + +
kroA100 ~ ++ ~ ++ ++ ~ ++ ~ ~ ~
lin105 ++ ++ + + ++ ~ + ++ + ++
gr137 + + + + + + + + + +
uls59 ++ ++ ~ ++ ++ ~ ++ + + +
d198 ++ ++ ++ ~ ++ ~ + + + +
pr226 + ++ + ++ + + + + + +
lin318 ++ ++ + ~ + + + + + +

The structure analysis of the best and worst ranked algorithms (See Table 5) reveals that the best
algorithm Alg_2 used an adaptive strategy for crossover and mutation operators. By this, the
algorithm can select different operator types, i.e., OX, BMX or CX operators for crossover and
2opt, sub-list or shift operators for mutation, in each iteration relying on their quality values.
However, as shown in Table 5, the difference of structure and parameter setting of the best and
worst algorithm is clear regarding their parameter adaptability, we can see that the Alg_2
structure uses two different parameter control strategies. It applies the genotype as a feedback
collection, and the current median as an effect assessment for crossover operator, and phenotype
as a feedback and ancestor effect as an assessment for mutation operator. For the quality
attribution and selection strategies, the crossover and mutilation operators used the learned
quality attribution and propionate with minimum probability selection, respectively. Alg_9 has
never used any adaptive parameter control strategy for its parameters. Finally, we believe that
GE-AdEA can produce an AJEA with a comparable optimization performance.
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4 Conclusion

In this paper, Grammatical Evolution framework for Adaptive Evolutionary Algorithms (GE-
AdEA\) has been proposed. GE-AdEA uses a grammar with several Adaptive parameter control
strategies adopted from an adaptive parameter control model and parameter settings to generate
AdEAs. During the evolution, the GE-AJEA executes the generated AJEAS as a training process
and produces the best-trained AdEASs based on their fitness’s. The best-trained algorithm can be
used later to solve the problem. In the training phase, GE-AdEA shows its capacity to generate
not only good performance AdEAs but also novel designs of AdEA architectures.

The results of the experiments using several traveling salesman problem instances
confirmed that GE-AdEA has a potential to improve the adaptive parameter control strategy for
crossover and mutation operators and their rates. The results also revealed that some of the
generated AdEAs outperform a tuned SGE. Finally, the work presented in this paper
demonstrates that automatic evolution of AdEA is feasible. To test the framework in its
generality, in future work, we aim to enrich this approach with more sophisticated adaptive
parameter control strategies, and to test it with different optimization problems and with several
benchmark algorithms. Also, we will study the influence of using different training instances
considering their characteristics (e.g., instance size, structure and degree of difficulty) on the
performance of the evolved AdEAS rather than using one training instance; this will lead us to
gain more perception on how to design the most effective training environment.
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Fixed jobs scheduling on a single machine with renewable
resources

Boukhalfa ZAHOUT - Ameur SOUKHAL -
Patrick MARTINEAU

Abstract This paper deals with scheduling n jobs on a single machine. Job J; is de-
fined by: a fixed start time s;, a fixed finish time f;, an amount of resource requirements
qi,; of type j = 1...k. The jobs are independent and should be processed without pre-
emption during their time interval [s;, f;] (processing time of job J; is p; = f; —s;). The
single machine continuously available in [0,00) owns Q; units of renewable resource
of type R; necessary to carry out jobs. A machine can process more than one job at
a time, provided the resource consumption does not exceed Q; for all j = 1...k. In
this context, the objective is to find an optimal schedule minimizing the number of re-
jected jobs. We show that this problem is NP-hard. An Integer Linear Program (ILP)
is proposed to solve optimally the studied scheduling problem. Three greedy heuristics
are also developed. Proposed algorithms are implemented and experimental results are
conducted on a set of randomly generated instances. The obtained solutions show the
efficiency of the proposed resolution methods.

Keywords : Scheduling; Single machine; Fixed job scheduling; Resources allocation;
Complexity; ILP; Greedy heuristics.

1 Introduction

In a classical scheduling problem, a set of independent jobs characterized by processing
times should be scheduled on a machine while respecting the constraints to optimize a
given criterion. The machine can process at most one job at a time (see Brucker et al.[5]
and Blazewicz et al.[3]). In this study, a set of n independent jobs should be scheduled
without preemption on a single machine. Additional renewable resources are however
necessary to process each job. Several types of such resources are needed, denoted
R;,j = 1...k. Hence, at execution time of job i, g;; units of available resource are
required. For each job 4, the start time s; and its finished time f; (i = 1,...,n) are fixed
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where its processing time p; = f; —s;. Dealing with each type of resources, the machine
can process more than one job at a time provided the resource consumption does not
exceed a given value Q; (j = 1...k). This machine is continuously available during
time interval [0, o). All data are assumed positive integers. The processing times of jobs
is formatted in slotted windows. The total time period [0, 7] is partitioned into equal
length slots (lg) with T = max;;—1,... n(f;). Without lost of generality we suppose
that: s; < f; and ¢; ; < Qj forall4 = 1,...,n and j = 1...k. Our objective is to
minimize the number of rejected jobs or equivalently calculate the maximum number
of jobs that can be scheduled.

Such problems corresponds to some real world situations as introduced in [1]. The
authors consider a set of aircraft (jobs) to be parked in an airport for land side op-
erations. The plane stays parked during a fixed interval of time, from the arrival of a
flight to the departure of the next one carried by the same aircraft. The parking space
layout or number of parking place (additional resource) is such that a same parking
lot (machine) may be occupied by either one large aircraft, or more smaller ones. The
problem under their study is to verify if it is possible to schedule all planned flights
and, if not, which ones must be rejected. In Angelelli et al.[1], authors consider m
parallel machines and only one additional resource. They are interested in at least
three types of problems: Does a feasible schedule exist for all jobs? Which is a subset
of jobs that can be scheduled with the maximum total value? What is the minimum
number of machines required to schedule all jobs? For this identified strongly NP-hard
problem, they propose a column generation scheme for the exact solution and develop
some greedy heuristics.

In our paper, the addressed problem ZSSR (fixed Interval Scheduling under Several
Resources requirement) can be met in a data center where the objective is to optimize
the use of resources and satisfy the users. Virtual Machines VMs (jobs) submitted by
the users should be executed on the same cluster. For example, this cluster owns three
limited types of renewable resources CPU, MEMORY and STORAGE with capacities
equal to Q1 CPU, a certain quantity of memory Q2 and a certain storage capacity Q3.
In this case, to execute VM i, a number of virtual CPUs ¢;1, virtual memory ¢;o and
hard drives ¢;3 are needed. Note that the feasibility problem has also been addressed
in [1] where the authors consider only one additional resource (memory devices). Let’s
consider the following example.

Example: Eight jobs have to be scheduled on a single cluster with 1000 Ghz CPU,
1000 Go Memory and 1000 Go Storage. For each job i, the starting times, the finishing
times and the quantities of each requirement resources ¢;;,;—1,2,3 are given in Table 1.

Jobs | s; [ J; | CPU | MEMORY | STORAGE
T [ 0] 6| 250 500 250
2 | 1| 4| 125 600 300
3 | 3| 8| 500 300 700
4 | 3|6 | 500 700 250
5 | 4| 8| 125 250 200
6 | 5| 9| 250 500 300
7 | 0| 4| 500 300 400
8 | 1] 5 | 250 800 600

Table 1: Instance with 8 jobs and 3 resources.
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For the above instance, the maximal number of jobs to schedule on a single machine
is four. An optimal solution is given in Figure 1.

[1000,1000,1000]

Js , 5,9, 250, 500, 300)

Machine

Fig. 1: Optimal Schedule of jobs.

According to Graham et al.[10], the studied problem is denoted by 1|s;, fi, ;5| >_; RC;
where ), RC; indicates the number of refused jobs that should be minimized.

Several variants of fixed interval scheduling problem have been addressed in ded-
icated literature. Almost all of them do not consider additional resources to process
jobs. We can classify these published results into two categories:

1. Interval scheduling problems where the number of machines is not fixed
and all jobs must be scheduled. In such problems, the objective is to find a
minimum-cost schedule in which all jobs are scheduled. In this case, we can cite
the works of Bhatia et al. where the authors proposed 2-approximation algorithm
to minimize the number of used machines;

2. Interval scheduling problems where the number of machines is fixed and
some jobs can be rejected. Maximize the total number of weighted jobs is equiv-
alent to find a min-cost flow and can be polynomially solved (see Arkin et al. [2] and
Bouzina et al. [4]). In case each job has unit weight, greedy algorithms maximizing
the number of scheduled jobs are proposed (see Faigle et al. [8] and Carlisle et
al. [7]). When an availability time interval is associated to each machine, Brucker
and Nordmann [6] proposed an O(n™~!) algorithm to maximize the number of
scheduled jobs.

For more details on existing models and developed algorithms to solve fixed interval
scheduling problem and its variants, one can refer to works of both Kovalyov et al. [12]
and Kolen et al. [11].

The rest of this paper is organized as follow. In Section 2 we show that the problem
ZSSTR is NP-hard. In Section 3, we propose an Integer linear programming formulation
to solve optimally the studied scheduling problem. In Section 4, three greedy heuristics
are proposed and described. All proposed algorithms are implemented and tested on
a large set of randomly generated instances and experimental results are presented in
Section 5.
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2 NP-completeness results

In what follows, we show that the scheduling problem 1|s;, f;, ¢;;| >, RC; with identical
time intervals and is NP-hard.

Proposition the problem 1|s;, f;, g;j| >=; RC; is NP-hard.

Proof The proof is given by reduction from the Partition problem with Equal
Size (PES) which is known to be NP-complete [9]. We denote by ZSSRD the decision
problem associated to 1|s;, f;, ;| >, RC;. ZSSRD is defined by:

Data: A set N of n jobs, identical time intervals [s;, f;] = [s, f],Vi,1 < i < n and
an integer value Y.

Question: Is there a machine schedule o for N such that >, RC; <Y? (RC; =1
if job J; is rejected).

We prove that PES «x ZSSRD.

PES problem is defined by:

Data: A set I ={a1,...,ai,...,an,...,a2yn} of 2n integers and an integer value B
such that 22221 a; = 2B

Question: Does there exist a partition of I into two subsets I; and [I2 such that
Eieh a; = Zielg a; = B and ‘]1‘ = ‘]2‘?

Given an arbitrary instance of PES problem, we construct an instance of ZSSRD
problem as presented in Table 2.

Jobs si | fi | ga qi2 qi3
Ji,i=1,...,2n | s f |l a | B—a; | a

Table 2: An instance of ZSSRD problem

Let Y = n and the maximum capacity of the first, second and third resources are
Q1 =B, Q2 = (n—1)B and Q3 = B respectively.

In the following, we show that there exists a schedule of jobs on one machine, if,
and only if, PES problem has a solution.

— Let us suppose that the answer to PES problem is ’'yes’. Let I; and Is be the
solution. Hence, by considering I; a subset of the corresponding jobs that are
scheduled, we have |I;] = m < Y. This solution is a feasible solution because
the quantity of each consumed resource does not exceed the available threshold:
Yienn @i =B=Q1=Qzand > ;.; (B—a;))=nB -3 .1 a;=(n-1)B=Qs.
Thus, I; is the subset of scheduled jobs for which the answer to ZSSRD problem
is ’yes’.

— Now suppose that the answer to ZSSRD problem is ’yes’ for sequence o. We have:
S % 1 RC; < Y. Let I1 be a subset of scheduled jobs. Then |I1| > Y = n and
2ier, 4 < B.

Suppose that |I1| = k > n. In this case the total quantity of consumed resource of
Ry is then: kB — >, a; > kB — B > (n — 1) B, which is a contradiction. Hence
|I1| = n.
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Dealing with Rg, we have 3, ; (B—a;) < (n—1)B. Suppose that } ;. ; (B—a;) <
(n — 1)B. In this case, we have } ,; a; > B, which is in contradiction with the
maximum available capacities of R; and R3.

Hence, we have >, a; = B and |I;| = n and I; is also a solution for PES
problem. Consequently, the answer for the question of the PES problem is ’yes’.

3 Integer linear programming formulation

We present in this section a time indexed integer linear programming formulation (ILP)
for solving the scheduling problem. We define two types of binary decision variables.

1. z; a binary variable equal to 1 if job J; is rejected, 0 otherwise.
2. y;+ a binary variable equal to 1 if job J; is executed at time ¢, and 0 otherwise.

The general formulation of the time-indexed ILP is the following.

Minimize: E T;
ieN

fi
subject to: Z yit = (fi —s3)* (1 —x;);Vie N (1)

t=s;

D it a5 < Qj3Vj € R; VL€ [0,T] (2)
ieEN
x; € {0,1}, yi €{0,1},Vi e N',Vt € [0,T].

N is the set of n jobs and R is the set of type of resource. [0, T] (T = max; j—1,... n(fi))
is the time period to schedule all jobs.

The constraints (1) ensure that if job J; is not rejected then it is scheduled during
its time interval. The constraints (2) ensure that no more than (); quantities of the
required resources are consumed at time .

4 Greedy heuristics

The scheduling algorithms in this study have many applications, but they were mo-
tivated by research into on line system and integrated-services networks. Hence, the
resolution method must have low complexity, not just polynomial complexity, and to
the extent possible, it should accommodate diverse performance objectives. Further-
more, in many important models that are relevant to the study of integrated-services
networks and on line system, the number of jobs to be processed can be extremely large,
so low complexity is essential. In this section, we presente low-complexity (O(nQ) or
better) greedy algorithm to solve fixed interval jobs scheduling problems. Roughly, this
algorithm works as follow: at first, jobs are sorted according to a given priority rule
I1. At each new event t (new job is available to be processed), we try to schedule this
job with respect to constraints of resources availability at time ¢. This job is rejected if
its assignement causes an unfeasible solution. This procedure is repeated until the last
job. Algorithm 1 describes the proposed global greedy heuristic.
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4.1 Priority rules

To calculate set L (see Algorithm 1), we describe here three priority rules that were
implemented.

1. Shortest Processing Time (SPT'): Jobs are sorted in non-decreasing order of
their processing times p; = f; — s; Vi € N/, in case of ties, the job with the smallest
finished time come first, otherwise lexicographical order is considered. This SPT
rule allows resources to be released as soon as possible.

2. Capacity-makespan (CCmax): Jobs are sorted in non-decreasing order of their
occupied space given by the following formula: zjeR qij * (fi — 54) Vi € N, in case
of ties, the job with the smallest finished time come first, otherwise lexicographical
order is considered. The idea of using C'Cmax rule is to minimize the space occupied
by jobs defined by processing time per quantities of consumed resources.

3. Average Resources Consumed (ARC'): Jobs are sorted in non-increasing order
of resources requirement per unit time during [s;, f;] given by the following formula:
>jer i/ (fi —si) Vi€ N, in case of ties, the job with the smallest finished time
come first, otherwise lexicographical order is considered. The idea of using ARC
rule is to minimize the average resources consumed by job per unit of time.

Algorithm 1: Global greedy heuristic

- Let L be the set of jobs sorted according to rule IT
- Let S* be the set of scheduled jobs; Initially, S* = 0 ;
while L # () do
Let Ji be the next available job
Let S C S™ be the subset of overlapping jobs during [sg, fx] (i.e their
processing intervals have a nonempty intersection)
if 3 csdij+ax; <Qj;VjE€R ) then
Schedule &
S* = S* Uk}
end
1 L = L\{k} (Ji is rejected)
end

5 Computational experiments

In this section we present the computational expriments we made in order to analyze
the performance of both exact method ILP and proposed heuristics. All heuristics have
been implemented in C++. IBM ILOG CPLEX Optimization Studio V12.6.3 is used
to solve the ILP formulation. All experiments are conducted on a Pentium i7 computer
with 2.80GHz x 8 cores (1 CPU) and 8 GB memory.

The performance evaluation of the algorithms under study has been carried out
with 100 instances, with a number of jobs n € {20,40,60,...,200} (10 instances are
generated per n). Without lost of generality, we normalize the units of a renewable
resource to 1000. Hence, Q1 = Q2 = Q3 = 1000 and for each job ¢;; (i = 1,...,n
and 7 = 1,2,3) have been generated using a discrete uniform distribution between
1 and 1000. The jobs-starting times s; have been generated using a discrete uniform
distribution between 0 and 1440 mn (one day). Then, the jobs-finishing times have
been generated using a discrete uniform distribution between s; + 1 and 1440 — s;.
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In what follows, experimental results are summarized in Table 3, Figure 2 and
Figure 3.

The first result concerns the performance of the exact method ILP. Out of 100
instances, Cplex solves instantaneously all instances (less than 1 second is needed for
each instance). We also computed the average computation time in minutes required
to obtain an optimal solution for huge size instances. For example, for instances with
1500 jobs the average computation time needed by ILP is 3 minutes, and at maximum
7 minutes for some instances.

In Table 3, the performances of heuristics SPT, CCmaz and ARC are presented.
From this table, the first column gives the size of instances (number of jobs). The
second, third and fourth columns indicate the number of optimal solved instances
(in percentage), where each line corresponds to 10 randomly generated instances. For
example, line with 40 jobs, over 10 instances 70% of them are optimally solved by
heuristic CCmasz where SPT (respectively ARC') finds an optimal solution 6/10 (3/10
respectively) times. Note that out of the 100 instances, SPT, CCmaz and ARC solve
optimally 24, 47 and 12 instances, respectively. ARC is the heuristic that has most
difficulty to optimally solve instances of size more than 40 jobs.

n SPT | CCmaz | ARC
20 90% 90% 90%
40 60% 70% 30%
60 30% 50% 0%
80 30% 60% 0%

100 | 10% 40% 0%
120 | 10% 50% 0%
140 0% 40% 0%
160 0% 30% 0%
180 0% 20% 0%
200 | 10% 20% 0%

Table 3: Rate of instances giving the optimal solution.

== SPT =—#— Ccmax ARC

The rate of instances giving the optimal solution

20 40 60 80 100 120 140 160 180 200
Type of instances

Fig. 2: Comparisons when varying number of jobs.
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In Figure 2, we analyze the behavior of the 3 heuristics according to the size of the
instances to be solved. We note that when the number of jobs increases, the performance
of the heuristics decreases. For instances with 140 jobs, the heuristic CChmaz presents
a rate of 40% (4 instances resolved at the optimum) against 0% for SPT and ARC.

In figure 3 where gaps are averaged with respect to the number of jobs, we observe
that SPT and ARC are dominated by CCiaz, however CCiqz obtains a clear ad-
vantage from the competition. In fact, out of 100 instances, the average gaps compared
to optimal solutions are: CCmax 4,41%, SPT 9,40% and ARC 14,96%

—M—# SPT —a—# Ccmax #ARC
25U

20%
15%
10%

5%

20 40 60 80 100 120 140 160 180 200

Fig. 3: Gap averaged on number of jobs

6 Conclusion

In this article, we study a new single machine interval scheduling problem. The machine
owns k limited types of renewable resources. This problem is motivated by a real
application that consists in allocating of a set of virtual machines (VMs) to a cloud
computing cluster, for example. The objective is to minimize the number of rejected
jobs. We prove that this problem is NP-hard.

However, an efficient exact method (ILP) is proposed. We then propose faster
greedy heuristics. All the algorithms have been tested on a large set of randomly
generated instances.

This study is still in progress. At first, would there be a pseudo polynomial time
dynamic programming algorithm? This question is still open. It will be also interesting
to determine other priority rules to improve global greedy heuristic and to consider the
weighted jobs scheduling problem. The next step of this study will deal with the case
of m parallel machines.
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Improving Ant Colony Optimization algorithm with Levy Flight

Yahui Liu * Buyang Cao

Abstract Ant Colony Optimization (ACO) algorithm is a metaheuristic evolved from the
foraging behavior of ants, and the swarm intelligence is realized by the behavior of a single ant.
ACO algorithm is widely used to solve combinatorial optimization problems. At the same time,
the quality of an ACO algorithm depends on the diversity of solutions and the times spent by the
algorithm. Some commonly used ACO algorithms such as the Elite ACO and the Rank-based
ACO attempt to reduce the computational time of the algorithm by exploring near the current
best solution. Other algorithms such as the Max-Min ACO try to explore the diverse solution
spaces by limiting the maximal and minimal pheromone. Levy Flight is a type of random
walking behavior based on Levy distribution, which is also widely observed in nature like animal
feeding routes, circulation logistics (e.g. banknotes). This article describes the ACO algorithm
combining with the Levy Flight mechanism, which can balance the convergence rate and the
diversity of solutions. The experiment demonstrates that the proposed Levy ACO algorithm
obtains better results than the classical ACO algorithm.

1 Introduction

ACO (Ant Colony Optimization) algorithm is a metaheuristic based on ants foraging
behavior, and it relies on the foraging behavior of single ant to embody the foraging intelligence
of ant colony. ACO algorithm was first proposed in Dorige’s doctoral dissertation in 1992 [1]
and more details provided later in 1996[2]. The early version of ACO algorithm was applied to
the TSP (Travelling Salesman Problem) problems, and Dorige [2] described how to use ACO
algorithm for TSP modeling and the experiments for validations. In his latest paper [3], Dorige
surveyed ACO technologies.

Since the birth of the ACO algorithm, there were many researchers carried out in-depth
studies, and proposed numerous improved versions, for instance, the Elite Ant Colony algorithm
[3], the Rank-based Ant Colony algorithm [4], the Max-Min Ant Colony Optimization algorithm
[5]. The core in terms of the efficiency of an ACO algorithm is to balance the diversity of
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exploration (Exploration) and the concentration of exploration (Exploitation). Exploration is to
explore new solution spaces as much as possible while exploitation is to search the areas near
the current best solution as fast as possible, In the above mentioned algorithms, the Elite Ant
Colony algorithm [3] and the Rank-based Ant Colony algorithm [4] focus on the exploitation of
current best solution, while the Max-Min ACO algorithm [5] balances the exploration and the
exploitation by setting the maximum and minimum pheromone and gets better performance.
Furthermore, ACO algorithm is not only applied for solving TSP [6-11,29] but also other
optimization problems such as VRP (Vehicle Routing Problem) [12-17], QAP (Quadratic
Assignment Problem) [18,19], JSP (Job-shop Problem) [20-22].

The random mechanism is embedded in ACO algorithms, where the probability
distribution plays a great role. Some common distributions of continuous distributions include
uniform, normal, exponential ones, etc. One class of continuous distribution we are interested
has the property called fat-tail, which means the tail is thicker than others such as the normal
and the exponential ones. Its randomness is weaker, so that a tail value that is rarely selected in
normal situation could be chosen with a higher probability. From our aspect (will be discussed
below), it increases the diversity of solutions that would contribute to better solutions.
Specifically Levy distribution is a kind of typical fat-tailed distribution. .

Levy Flight [23] is a type of random walking patterns that conforms to the Levy distribution,
which was named after the French mathematician Paul Lévy, and the step length has the fat-
tailed distribution. The walking steps are isotropic random directions when walking in a space
with the number of dimensions greater than 1. Many animal's foraging movements also possess
the Levy Flight features, e.g. most of the feeding time is spent around known food sources, and
occasionally a long-distance flight is needed to find other food sources [24] [26].

2 Integration of Levy Flight and ACO

2.1 Problems background

In this paper, the concrete application for which the Levy ACO will be applied is the
Traveling Salesman Problem (TSP). When solving TSP, ACO algorithm utilizes the positive
feedback by accumulating the pheromone to focus on possible better solutions and the negative
feedback by evaporating pheromone to reduce the history solution effect for exploring more
search spaces. The framework of an ACO algorithm is shown in figure 1.

Similar other metaheuristics, ACO not only needs to explore more diverse solution spaces
to avoid being trapped at a local optimum, but also attempts to speed up the solution procedure
to reduce the time spent. In summary, a good ACO should be able to find higher quality solution
within shorter period.

In the ACO algorithm shown in figure 2, the uniform distribution is employed to for each
single ant to select the next site from the possible sites (assuming we are solving a TSP) in step
2. At this time, the attractant factor derived from the attraction and pheromone values for each
candidate will accumulated to 100%, please refer to formula (1). Each single ant will select
the next site according to the random number uniformly distributed between 0 and 1. However,
because attractant factors for candidate sites vary, and they are normally or exponentially
distributed after sorted, the selection probability of a candidate site will decline quickly and be
close to zero as the number of ranks increases. Statistically the candidate sites with small
attraction factors then could be two or more standard deviations from the mean and would rarely
be selected since their selection probabilities are very low. As the result, the algorithm always
focuses on candidate sites with higher attractant and it is hard to achieve diverse solutions.

[Tij(t)]a[nij(t)]ﬁ
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Step 7
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END

Fig. 1. The framework of ACO algorithm.

The Max-Min ACO algorithm explores more solution spaces and performs better among
those improved versions of ACO algorithm. Nevertheless, there is still some room for the
improvement in the Max-Min ACO algorithm based on our study. In this paper, the Levy Flight
mechanism is employed to improve the original Max-Min ACO algorithm while the original
Max-Min ACO is used for benchmarking.

2.2 Modification of Levy Flight for ACO

The Levy Flight mechanism is defined upon the Levy distribution. The Normal, the Cauchy,
and the Levy distributions are shown in Figure 2. Unlike the Normal and the Cauchy
distributions, the Levy distribution is a fat-tailed one, which means the points in the tail part
have higher probability than the one with same value in other two distributions. Upon solving
TSP, we are going to utilize Levy distribution (Levy flight) to enhance ACO, which shall be able
to explore more solution spaces within a reasonable computational time.
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Fig. 2. Different Distributions.
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Figure 3 depicts the Brownian motion upon the Normal distribution and Levy flight based
on the Levy distribution [26]. It is obvious the area covered by Levy flight is much larger than
the one of Brownian motion within the same 1000 steps. Part b of figure 3 illustrates the detailed
trajectory of Brownian motion, and it indicates the movements of the Brownian motion mainly
concentrate around the current point with step length of 1. The parameters of Levy flight can be
adjusted to balance effectively the diversification and intensification. It’s a Brownian motion if
step length equals to 1, and others are so called Levy flight if step length is great than 1. The fly
distance is defined as the step length in our paper.

a 4 Lévyflight
\‘\ évy fligl

Fig. 3 Levy Flight vs Brownian Walk

The formulas of the standard Levy distribution are represented by:

L(s) = |S|7*F 2
s= -+ (©)

[v|B
u~N(0,02),v~N(0,02) “)

The solution procedure for the Levy distribution use formulas (2) to (4). L(s) is Levy
distribution for step length S, p and v follow the normal distribution, and f is the parameter for
Levy distribution. Formulas (2) to (4) illustrate how the step length is computed, which is the
most important part of the Levy Flight. The step length is a random number following the Levy
distribution, and it is associated with the direction of Levy Flight which follows the uniform
distribution, maybe in 2 dimension or 3 dimension, depending on the particular application.
There is no direction to be considered if the movement of Levy flight is one dimensional.

The calculation of Levy Flight using formulas (2) to (4) is very complicated and time
consuming. The running time of an ACO algorithm will increase significantly if the Levy
distribution is applied directly. ACO algorithm is an iterative process in which the Levy flight
function will be called repeatedly, therefore it is necessary to pick a simple and approximate
model for decreasing the computational cost. Furthermore, the standard Levy flight model
requires two parameters, i.e., direction and step length, whereas the direction is uniformly
distributed and the step length follows the Levy distribution. In our ACO algorithm, only a
random number between 0 and 1 is needed for selecting the next site. Therefore, the Levy flight
mechanism in this paper needs only to consider the step length whose value ranges from 0 to 1
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after the conversion and follows the Levy distribution.

2.3 Integrating Levy Flight with ACO

The structure of the Levy ACO proposed in this paper is the same as the classic ACO except
the application of the Levy flight mechanism to determine the probability of selecting next
visiting site (step 2 in Figure 1). Figure 4 lists side-by-side the flowcharts of classic ACO and
the Levy ACO for better comparison. Some grey steps in the flowchart of Levy ACO are newly
added ones. These steps calculate the new selection probability, sort the candidate sites upon the
attractants, and then apply the new selection probability.

O O
v

’ Ready for construct solution ’ ’ Ready for construct solution ’

’ Generate a uniform random number l ’ Generate a uniform random number

between 0 and 1 for probability between 0 and 1 for probability

Generate a uniform random number between
0and 1 for Levy Flight Probability

ght Probability great-than

Recalculate the new probability accord to
the Levy Flight Convert Function

A 4

Calculate the attract factor of All Calculate the attract factor of All
Candidate Sites Candidate Sites

‘ Sort Candidate Sites by attract factor

A 4 ¢

’ Calculate percentage for each site by its ’ ’ Calculate percentage for each site by its ’

attract factor in All Candidate Sites attract factor in All Candidate Sites

Select next site for match probability and Select next site for match probability and

percentage for each site percentage for each site

—4 Add next site for the current solution —4 Add next site for the current solution

’ The new solution is constructed ’(— ’ The new solution is constructed ’(7

C_w C =

Fig. 4. Comparison of Classic ACO and Levy ACO for Step 2 in ACO Algorithm

The attractive factor 1, an exponential function of parameter B in formula (1), makes each
candidate site have different attracting value, and thus each candidate site has different and
exponentially decreasing probability to be selected after sorted. So very few sites have higher
probabilities and will be selected more frequently while most sites have lower probabilities and
they are selected seldom. This unfavorable scenario can be improved if Levy distribution is
applied instead of using original uniform distribution.

The original uniformly distributed selection probability will be replaced by the step length
of Levy Flight after the conversion. Please note that the step length of Levy flight can be any
positive number, therefore it needs to be converted so that the result ranging from 0 to 1 as the
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probability. Formulas (5) to (7) are designed to convert the step length into the selection
probability. In Levy ACO, all candidate sites should be sorted by their attraction factor values
(formula (1)) in non-increasing order before applying the converted selection probability. After
sorting, obviously the front part contains the candidate sites with higher attractants while the
back portion consists of the candidate sites with lower attractants. With the amplification
mechanism in our conversion formulas, the new selection probabilities of some candidate sites
with lower attractants will be amplified. In this case, these original “unfavorable” sites will more
likely be selected and diverse solution spaces can be searched.

Some definitions of the terms used in the conversion formulas:

e DB, : New selection probability after Levy flight conversion, it will be used for
selecting the next site.

e P, : The original selection probability that is uniformly distributed before the Levy
flight conversion.

e Py : The random number uniformly distributed between 0 and 1 is used for switching
Levy flight conversion.

®  Pipreshoia: Threshold ranging from 0 to 1 for Levy flight conversion, which determines
if Levy flight conversion is turned on or not after being compared with Py,

1-Piey
1= Prow =A% ——2—% (1 = Prou) (5)
threshold
1-Piey
Prow = 1= A% ——2—x (1 = Pppy) (6)
threshold
1—Dthreshold .
1—- A= * (1 - pnow)' lf Pievy > Pthreshold
Pnew = 1=Plevy . (7)
Pnow» lf plevy < Pthreshold

The core steps of Levy flight conversion (formulas (5) to (7)):

e The Levy flight conversion formula (5) is applied to the Levy flight step lengths
that are greater than 1 so that they will be mapped to the values between 0 and 1.

e The formula (6) is the transformation of formula (5) for calculating pye,y-

e Value ppow and pyeyy are generated in uniformly distributed between 0 and 1.

e Levy flight threshold pipresnoia is set for determining if the selection probability
should apply Levy Flight conversion or not.

e New selection probability pye, use the value of ppey if Pieyy is less than
Dthreshola (indicating step length is not greater than 1). In this case p;,,, is not
converted.

e The new probability py., should be recalculated using formula (6) if pjeyy is
greater than Pipresnoia, that is, the Levy flight step length is greater than 1 and
Levy flight conversion is turned on.

In the above Levy flight conversion formulas we need two predefined parameters:
Pinresnowa (Levy flight threshold) and A (amplification ratio). The new selection probability
presented in formula (7) is able to encourage the current ant to choose the candidate sites with
original lower selection probabilities to increase the diversity of the solution space with the hope
of getting out of local optima.
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3 Computational Experiments

3.1 Data and environment setting

In the following computational experiments, we compare the results obtained by the Levy
ACO proposed in this paper integrates the original Max-Min ACO algorithm with Levy Flight
mechanism and the original Max-Min ACO algorithm without Levy Flight mechanism. The code
for the Levy ACO proposed in this paper is implemented based on the code for ACO algorithm
[5] available at http://www.aco-metaheuristic.org/aco-code/, The Levy threshold pipreshoia
and amplification ratio 4 are set to be 0.8 and 1 respectively. Each benchmark runs 100 times
considering the probabilistic factor in ACO algorithms.

The platform configuration for benchmarking: Windows 10 x64, CPU 8 cores 2.7GHz,
Memory 32GB, the programming language is C with the original Max-Min ACO algorithm [28]
and the Levy ACO algorithm in this paper.

3.2 Benchmarks

3.2.1 Benchmark 1 and 2

The experiments are performed using instance 1ink318 and pcb442 in TSPLIB [27], and
here are some observations are illustrated in figure 5 and table 1:

e All instances reach the optimal solution 52029 for link318 or 50778 for pcb442, and
the average number of iterations to get the best solution for the Levy ACO is lower than
the original Max-Min ACO. This result indicates that the Levy ACO can reach the best
solution faster.

e For the purpose of analyzing the performance of the algorithm, we conduct the
statistical analyses for the benchmarks including the maximal iterations, average
iterations, median iterations, and minimal iterations to obtain the best solution.

Best Iterations between With/Without Levy-Flight

— = Without Levy Flight

—— With Levy Flight

Best Iteration Round

Test Rounds

Best Iteration Round

g

20000

Best Iterations between With/Without Levy-Flight
Without Levy Flight
With Levy Fiight

1 1n 2 31 41 51 61 7 a1 91 101
Test Rounds

Fig. 5. Benchmark for with/without Levy Flight for link318(left) and pcb442(right)

The statistical results are listed in table 1:

e The maximal number of iterations for link318 is reduced from 1395 (without Levy
flight) to 539 (with Levy flight), an improvement of 61.36%. The maximal number of
iterations for pcb442 is reduced from 72016 (without Levy flight) to 31956 (with Levy

flight) with an improvement of 55.63%.

e The average number of iterations is reduced by 32.13% or 23.53% with Levy ACO.
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The median number of iterations shows the improvement of 9.31% or 20.00% by
applying Levy ACO.

Levy ACO runs more consistently as the variance in the number of iterations is reduced
by 43.58% or 38.26%, which means the stability of the algorithm is also improved.
The minimal number of iterations for Levy ACO increases a bit for link318 and
decrease by 85.19% for pcb442. Please note that for 1ink318, the minimal iteration
number is already very low (31), and there is very small space to improve. This is
reasonable because ACO algorithm is a probabilistic algorithm.

Table 1. Benchmark for with/without Levy Flight for link318/pcb442

Without Levy Flight With Levy Flight Improve Percentage

link318 pcb442 link318 pcb442 link318 pcb442

Max round 1395 72016 539 31956 61.36% 55.63%

Average round 216 10403.69 146.59 7956.17 32.13% 23.53%

Mean round 102 7735 92.5 6188 9.31% 20.00%

Min round 31 466 38 69 -22.58% 85.19%

Sample variance 230.79 10289.07 130.22 6352.98 43.58% 38.26%

3.2.2 Benchmark 3 and 4

Instance a280 and pr299 in TSPLIB [27] are selected for the other experiment, and the
results are illustrated in figure 6 and table 2:

eration Round

i ; 1‘| ; ‘ :I‘:? | )1 :.# F J
;iw,:wﬁ:k;m;pt\ | PR ,“ 1:'H " HH RVM e W 1 b

\ \\}1‘ |‘,'“;’l " o : |‘r" yL ol \"’9 \‘LL{,\,’ ; \l | l:’
l% Z A W M\: »\vuﬁx} i W A Wil 4 i

Best Iteration Between With/Without Levy Flight for a280 Best Iteration Between With/Without Levy Flight for pr299

= = Without Levy Fight

Fig. 6. Benchmark for with/without Levy Flight for a280 (left) and pr299 (right)

Similarly, we can draw the following conclusions

All instances get the best solution 2579 for a280 and 48191 for pr299, and the average
number of iterations to get the best solution of the Levy ACO is lower than the original
Max-Min ACO. This indicates that the Levy ACO can reach the best solution faster.
The number of average iterations shows 41.53% for a280 and 17.85% for pr299
reduction by applying the Levy ACO.

The median number of iterations of the Levy ACO possesses an improvement 91.50%
for a280 and 5.78% for pr299 comparing to the original Max-Min ACO.

It is obvious that the Levy ACO runs more consistently since it has lower variance in
the number of iterations. It indicates the stability of the Levy ACO is improved.

The minimal number of iterations of the Levy ACO presents same or some
improvement as well with a very small value (2 or 3).
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Table 2. Benchmark for with/without Levy Flight for a280 and pr299

Without Levy Flight With Levy Flight Improve Percentage

a280 pr299 a280 pr299 a280 pr299

Max round 1846 3035 1221 2779 33.86% 8.43%
Average round 346.96 849.25 202.86 697.63 41.53% 17.85%
Mean round 306 606 26 571 91.50% 5.78%
Min round 2 3 2 2 0.00% 33.33%
Sample variance 393.71 701.48 275.90 672.74 29.92% 4.10%

4 Conclusions

The paper proposes the Levy ACO algorithm that is developed based on Levy Flight
mechanism and classic ACO algorithm. The experiment demonstrates that the proposed
algorithm can achieve the best solution more effectively. The capabilities of exploring diverse
solution spaces and avoiding local optima contribute the efficiency of the algorithm as a
whole. On the average the proposed algorithm can reach the optimal solution with less
(reduced by 32.13%, 23.53%, 41.53% and 17.85%) iterations comparing to the original Max-
Min ACO algorithm. The computational results demonstrate the superiority of the Levy ACO
proposed in the paper.

In addition to conducting more computational experiments, for example, using the other
instances in TSPLIB, we are planning to tune parameters of the Levy ACO with some smarter
methods to further improve the performance of the Levy ACO and to study its applicability for
other problems such as VRP.
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A Robust Crew Pairing Model for Airline Operations using Crew Swaps
and Slack Times

Ian Frederic A. Ilagan ¢ Charlle L. Sy

Abstract The trend in airlines, as more flights are being flown, is that delays have been less
from unpredictable events and more from operations. Airlines push to maximize profits by
scheduling flights with little to no regard for possible disruptions. Common practices that deal
with disruptions, such as purposeful cancellation of flights, and assignment of emergency crew,
are usually inefficient. Planning for disruptions in operations, while increasing planned costs,
create flight schedules that are capable of handling disruptions. This paper proposes a robust
crew pairing model that schedules slack times and crew swaps that can potentially reduce the
propagation of delay when a disruption occurs. A mathematical formulation is presented. A
small set of flights is presented to show the schedules obtained from the traditional and robust
models. The comparison is then made for a set of 1890 flights from a real major airline. The
robust model is able to create a solution with higher planned costs but better delay indicators.

1 Background

The time-sensitive nature of service in the airline industry means that several scheduling
problems arise during operations. Airline resources work under connectivity and compatibility
constraints [1]. Among those resources are the crew members. Scheduling the aircrafts can be
extremely costly when being inefficient, and are often inflexible, while airlines have limited
control in scheduling passengers. Crew scheduling is both flexible and manageable in cost, and
innovations in crew scheduling can lead to improvements in airline operations that are feasible
in cost, but still having significant impact.

1.1 Crew pairing

Crew pairing is part of a sequential process done in airline resource management that
follows the timetable construction and the assignment of aircrafts. Pairings are constructed by
forming sequences of connectable flights within the same fleet that start and end at the same
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crew base [2]. Crew pairing finds sets of specified crew that will operate together for the duration
of the pairing. The graphical representation of a pairing is shown in Figure 1.

‘ Time Away From Base

f 1
‘ Day 1 Day 2
I l [ |
— - > ——))——. -—— > .
Flight Sit Flight Overnight Rest Flight Sit Flight

Brief Debrief ] Brief Debrief J
Duty Period Duty Period |

CREW PAIRING

Figure 1: Structure of a crew pairing

A duty period is different from a crew pairing. A duty period is a sequence of flight legs
that can be legally flown by a set of crew with only short rest periods. The crew pairing is a
sequence of flight legs, and long rest periods if needed, that can be legally flown by a set of
crew, and starts and ends at the same home base. A crew pairing is composed of one or more
duty periods.

1.2 Delays and delay propagation

The air transport industry neglects shorter delays (departure and arrivals no later than 15
minutes). In the context of air transport, passengers consider small delays as being negligible
[3]. The popular 15-minute margin of tolerance is the viewpoint for significance of lateness. A
missed connection is what can increase the significance of lateness from the viewpoint of a
passenger, which is why connecting flights are scheduled with ample connection time [4].

Delays are what affect punctuality, an attribute that passengers find satisfaction in.
Consistent lack in punctuality causes a reduction in the airline’s market share. There is therefore
a cost to lack of punctuality. Flights that are delayed (or cancelled) to an extent beyond the
tolerance limit of its passengers will shift service perception of customers wherein switching
airlines of preference is likely [5].

Delays in an airline context usually force the company to solve the problem locally where
the disruption occurs. While local resources will allow for lessening the effect of the delay, it is
still likely to propagate towards those with connected resources occurs [6]. Shown in Figure 2
is the effect delay propagation from single or multiple delays on a schedule.

\/\/f\ﬁ/\/°
TAYAVAVANNWA VANVNIAW
INLANTL TAINIANT
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&
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z

300 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200
— Scheduled Flight =-===% Flightwith Propagated Delay —— Flight with Local and Propagated Delay

Figure 2: Flight schedule with propagation from a single delay (left), and from multiple delays (right)

A delay on the first flight will translate to subsequent flights. Mitigation of the delay is
possible if local resources at each flight will allow for catching up, such as if passengers can be
boarded quicker than the standard time. This is unlikely for flights that are high-density, which
are usually scheduled with no slack. A single delay can at the beginning of a schedule can cause
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the same delay to propagate to further flights. In a realistic schedule, flights will often have
delays that were created locally and that were propagated from previous flights Figure 2 follows
a timeline network representation, further discussed in chapter 2.2

1.3 Planning for disruptions through slack times and crew swaps

A promising area of research is to construct schedules that perform well under irregularities
[7]. Robustness is in the form of stability, plans that as least sensitive as possible to disruptions;
or flexibility, which gives options for the plan to remain cost-effective given a perceived set of
disruption events [8]. Scheduling by providing ample slack times gives stability, while
scheduling for possible crew swaps gives flexibility.

Slack times are purposely idle time in the schedule that can possibly absorb delays. Crew
swaps are discussed through an example: suppose that Crew A are on standby waiting for their
next flight Flight A’s departure time. At the same time, a flight Flight B departing from the same
airport is delayed due to Crew B still in transit. An example of a crew swap is scheduling Crew
A to take over duties for Flight B, while the in-transit Crew B will take over Flight A when they
arrive. While this might result in Flight A being delayed if Crew B takes too long to arrive, the
delays between Flight A and Flight B are essentially mitigated and shared between the two.

The prevalent scheduling process in airlines pay insufficient consideration on the impact
of uncertainty in operating a complex airline network with multiple interconnected resources
[9]. Disruption management as a field has primarily existed as a reactive approach through
recovery, which aims to put a schedule back to its original as soon as possible following a
disruption. Reactive disruption management uses simple techniques for solving, focuses on
having minimal costs during planning, and incurs higher delays when disruptions occur. On the
other hand, proactive disruption management in the form of robust schedules incorporates
uncertainty of delays into the planning, incurring higher planned costs but often lower delays.

Section 2 discusses on relevant literature, including context on airline resource planning,
network representations used in this research, and the traditional modeling approach of the crew
pairing problem. Section 3 formulates the robust crew pairing model, an extension of the
traditional set partitioning approach. Section 4 discusses on a methodology for solving large
instances of the problem. Computational results are shown in Section 5. Emphasis is placed on
comparison of the solutions obtained from the robust model and the traditional model. Lastly,
conclusions and extensions on the research is discussed in Section 6.

2 Related Literature

2.1 Airline resource planning

The large complexity of scheduling flights, aircrafts, and crew for even just a small set of
flights have led to the creation of a sequential process that is now generally applicable for any
airline [10].The process, in sequence, is timetable construction, fleet assignment, crew pairing,
and crew rostering, illustrated in Figure 3.

Timetable Construction Fleet Assignment Crew Pairing Crew Rostering
® ® \ / O @
R jg » < » i
Demand Fleet Types Flight Locations and Times Crew Types
Inputs Operable Locations Number of Aircrafts Crew Base Locations Number of Crew Members
Govemnment and Airport Aircraft Maintenance Schedule Regulatory Constraints Desires of Crew
Constraints Regulatory Constraints Crew Requirements Seniority of Crew
Outputs Constructed timetable of Assigned rotation of specific Grouping of flights (pairings) Schedule of individual crew

flights, with locations and times aircrafts members

Figure 3: The stages of resource planning in the airline industry
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A timetable of flights is created first. Expectations from marketing based on analysis of
demand is matched with the available fleet, the available crew, and the time slots available for
the airline in the different airports. The timetable consists of flight legs (non-stop flights), each
with the locations, dates, and times of departure and arrival. Allocation of aircrafts to the flight
legs from the timetable is then done based on the expected revenue, passenger demand, and
flight distance of each flight leg. Larger aircrafts are assigned to flights with more demand and
longer distances. Crew pairings are then constructed by forming sequences of connectable flights
within the same fleet that start and end at the same crew base. Crew pairing finds sets of specified
crew that will operate together for the duration of the pairing. The structure of a crew pairing is
shown in Figure 3. Crew rostering is then done, which assigns selected pairings from the
previous step to the airline’s crew. The objective of crew rostering is to cover all pairings, as
well as other schedules of the crew including training requirements, vacation days, etc. Work
rules and regulations must be satisfied in the rostering [11]. In some airlines, a subset of crew
rostering is done known as crew bidding. Crew members bid on their preferred schedules in
attempt to satisfy the desires of individual crew members [12].

Disruption management is the monitoring and scheduling of resources close to the day of
operations. While disruptions should be resolved with locally available resources, disruptions in
the airline industry tend to extend to other flights due to connectivity of resources. Recovering
from unexpected events is now a well established part of operations among airlines, and is
typically seen as the final stage of airline resource planning.

The timetable construction and the fleet assignment are heavily related to each other, as
there is no room for flexibility in the assignment of aircrafts. The goal of constructing timetables
and assigning fleets is usually to maximize revenue. For most airlines, this process is repeated
semi-annually, accounting for changes in the demand and profitability of each leg [13]. Planning
for crew is done much closer to the actual flight legs. A summarization and timeline view of the
airline resource planning process is shown in Figure 4.

Disruption

P Maximize Revenue - Maximize Revenue for Passengers, Minimize Cost for Aircraft and Crew . g Flgnt o Management
> > € > <€ >

<

<&
<

Passengers A Revenue Management — = Passenger Recovery

/

Publish 6

Short haul
tail
assignment

\\L
Crew o| Finaize Finalize
Crew R Crew pairing = rostering P cockpit crew [F] cabin crew >

Fleet
assignment

Preiminary | o Long haul tail
Arcrait assignment

Timetable Fight  |=3»l Aircraft Recovery

|

Y

mos.
timetable

Y

Crew Recovery

-110-5years -6 months - 5 months -3 months - 6 weeks - 10 days -2 days 0
-5 days -1 day

Figure 4: A timeline view of airline resource planning

2.2 Network representation

Mathematical models used to solve airline planning problems or recovery problems use
network representations. These figures provide easy interpretation of airline scheduling
problems. The three most common network representations in literature are connection
networks, time-band networks, and timeline networks [14]. The primary representation used in
this paper is the timeline network.

Timeline networks represent schedules in the most natural way possible. A timeline
network has arrows that represent each flight. The arrival or departure of any flight is the
beginning or end of an arrow. Time-line networks are inherently activity-on-arrow networks.
Horizontal lines are set arbitrarily, pertaining to the different airports in the system. Nodes are
placed on a specific line corresponding to the airport of the event. The horizontal location of the
start and end of an arrow is set based on the time of the flight. An arrow connecting different
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horizontal lines pertains to a feasible flight. An arrow connecting nodes found on the same
horizontal pertains to a grounded aircraft. All arrows are constructed moving from left to right,
indicating chronological flow. Figure 2 uses a network representation based on the data from
Table 1. The data in this table, from hypothetical airline ‘Hypothetical Phils’, connects several
airports in the Philippines. Sixteen flights comprise of Hypothetical Phils’ schedule, with CEB
and MNL acting as high-density ports while ZAM and TUG act as low-density ports. This
timetable simulates a small hub-and-spoke structure.

Table 1: Hypothetical Phils’ flight schedule

z -f ¢ g z -f ¢ £
sz i: i 2 4E LE sz B3 % ST G
T £5 F:f EF §:f f% F3 f:i EF E:
1 MNL CEB 0925 1025 9 ZAM  CEB 0825 1015
2 CEB_ MNL 1050 1150 10 CEB  ZAM 1150 1400
3 MNL CEB 1215 1315 11 ZAM  CEB 1540 1750
4 CEB  MNL 1340 1440 12 CEB ZAM 1930 2130
5 MNL CEB 1505 1605 13 TUG MNL 0935 1120
6 CEB_ MNL 1630 1730 14 MNL TUG 1240 1425
7  MNL CEB 1755 1855 15 TUG MNL 1530 1715
8 CEB MNL 1920 2020 16 MNL TUG 1820 2005

2.3 Traditional modeling approach

The traditional formulation of the crew pairing problem is the set partitioning formulation,
with objective of finding a minimum cost subset of feasible pairings such that every flight is
covered by exactly one selected pairing [15]. Pairings are the sequences of flights wherein crew
members work together, and are constrained to having to start and end at the same crew base.
Let P be the set of all feasible pairings and F the set of all flights, ¢, the cost of each pairing,
as, = 1if pairing p covers flight f'and 0 otherwise, x,, = 1 if pairing p is chosen in the solution
and 0 otherwise. The traditional crew pairing formulation is as follows:

Mianpxp (1)

pEP

s.t. zafpxpzl VEEF, p €P (2)
peP

x, € {0,1}, Vp €P (3)

This formulation minimizes the total costs of the chosen pairings, ensuring that each flight
is covered by one and exactly one pairing only.

2.4 Previous works

An existing research uses a propagation tree to understand how a root delay propagates
through aircraft and crew connections. It also evaluates how absorption of this can be done by
slack time, and re-allocates slack times to where it’s needed the most. [6]. Another research
provides a detailed methodology on providing crew swap opportunities as contingencies in delay
propagations. Their model prioritizes high delay propagation costs for swap opportunities [16].
There has been work on costing the per delay minute of a flight. Literature suggests that the cost
of flight delays follow an ‘S’ shape curve, in that flight delays are tolerable up to an extent, then
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becomes increasingly dissatisfactory until it reaches very long delays and approaches full
customer dissatisfaction [4].

3 Robust crew pairing model

The model is formulated as an extension of the set partitioning formulation of the
traditional crew pairing problem (CPP). The objective function involves the computation of costs
of pairings, as well as the cost of delay propagations for each flight in each pairing. The model
involves two phases, wherein the first selects the pairings for the solution, and the second selects
the crew swaps for the solution.

3.1 Assumptions
The following are the assumptions taken in the development of the model in this research:

o The schedules of flights can be known with certainty and cannot be changed.

o  Minimum ground connection times can be defined for each pair of flights.

Any crew member can be scheduled to any flight. Crew pairings can be formed around
any of the flights within the set of flights being solved in the problem.

Regulations are known with certainty and do not vary.

The cost of each crew pairing can be determined as a deterministic value.

No additional flights need to be added into the timetable.

There are enough crew members to satisfy the pairings to be formed in the model.
All crew swaps to be performed have an available aircraft.

@)

O O O O O

3.2 Definition of parameters
The following are defined in the model:

Sets and notations
P set of all feasible pairings R(f,p) set of flights that follow flight f
F set of all flights and is in the same duty period as f
in pairing p

pp(®  preceding flight of f'at pairing p in
' a(Q  the first flight in the set of flights

the same duty period

Qfp)  set of flights that precede flight 1 0
and is in the same duty period as f w(Q)  the last flight in the set of flights QO

in pairing p M a very large number

System and decision variables

ACCq,  accumulated flight duty hours after 1 if a swap is possible between
flying flight fin pairing p flights f'and f~ for pairings p and p’,
PNDg,  pending flight duty hours after 0 otherwise
flying flight fin pairing p Xp binary decision variable for

selection of pairings
1 if pairing p is selected, 0
otherwise

DP,  delay propagation value for pairing

P

Spep’  binary variable for checking
possibility of a swap between two Yip
flights from different pairings

binary decision variable for
linearization of delay propagation
requirement; i € {1,2}

1 if requirement is not violated; 0
otherwise
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Input parameters
Cp cost of pairing apg  binary variable for the location
T binary variable defining flights connectivity of two flights
covered by pairings 1 if flight f arrives at the same
1 if flight f'is covered by pairing p airport as flight f” departs, 0
0 otherwise otherwise
g minimum ground connection time hb,,» binary variable for considering
Iy arrival time of flight /' home bases of two pairings
dy departure time of flight f 1 if pairing p and p’ has the same
reg. maximum regulation flight duty home base, 0 otherwise
period of crew dpmin ~ minimum delay propagation level
b briefing period time to consider a swap that mitigates
b’ debriefing period time delay
T average delay time of flight /' dpmax  maximum delay propagation level
to consider a swap that absorbs
delay

3.3 First phase: Pairing selection

The first phase involves the selection of the pairings into the solution. It has two objective
functions that are counteracting, and thus, uses a user-inputted weight for the second objective
function.

Mianpxp (4)

pEP

Max z DPpo ( 5 )

peP

Objective function ( 4 ) is taken from the traditional crew pairing problem formulation. It
aims to minimize the total cost of the pairings chosen to cover the set of flights. Objective
function ( 5 ) minimizes the total delay propagation value of the chosen pairings. The first
expression aims to choose the pairings with the least costs, while the second expression chooses
the pairings with least delay propagation. This bi-objective formulation is resolved by using a
user-inputted weight to the second objective function.

The following mathematical expressions are the constraints of the model formulated:

Z“fpxp=1 VfEF (6)

peP

x, € {0,1} (7)

Constraint ( 6 ) ensures that all flights must be catered to by exactly one pairing. This
constraint is also present in the traditional crew pairing problem formulation. Constraint ( 7 )
states that the decision variable x,, is a binary variable. The delay propagation value DP, of the
pairings generated is calculated as the pairings are generated. It is calculated using the average
historical delays of flights 7, their scheduled arrival times 7¢, and their scheduled departure

times dy. The minimum ground connection time g is also needed. An example of how the delay
propagation value DP, is calculated is shown in Figure 5, which takes data from the hypothetical
flight schedule in Table 1.
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£ =25 mins 2=25 mins g =25 mins
Slack = 55 mins Slack = 40 mins Slack = 40 mins

Flight 13
Departure Location: TUG
Arrival Location: MNL
Departure Time: 0935
Arrival Time: 1120
Flight Time: 105 minutes

Root Delay 7y = 40 mins
Propagated Delay = 0

Flight 14
Departure Location: MNL
Arrival Location: TUG
Departure Time: 1240
Arrival Time: 1425
Flight Time: 105 minutes

Root Delay 7y = 55 mins
Propagated Delay = 15 mins

Flight 15
Departure Location: TUG
Arrival Location: MNL
Departure Time: 1530
Arrival Time: 1715
Flight Time: 105 minutes

Root Delay 7 = 35 mins
Propagated Delay = 10 mins

Flight 16
Departure Location: MNL
Arrival Location: TUG
Departure Time: 1820
Arrival Time: 2005
Flight Time: 105 minutes

Root Delay 7 = 30 mins
Propagated Delay = 0

Current Flight Delayed by: Current Flight Delayed by: Current Flight Delayed by: Current Flight Delayed by:
40 mins 55 mins 50 mins 40 mins

Figure 5: Example of delay propagation value computation

The delay propagation value is the average of the propagated delay for each flight. For the
example in Figure 5, the delay propagation value is 6.25 minutes. In the first flight, the root
delay (or the historical delay average for that flight) is 40 minutes. The slack between the first
and the second flight is 55 minutes. Thus, no delay propagates on to the next flight. So, the first
flight only experiences the root delay. The third flight, on the other hand, experiences a
propagated 15 minutes of delay from the second flight. This is because the slack times could not
absorb all of the root delay, and thus, allows for delay propagation. The delay propagation value
DP, used in the model does not account for how large the root delay is, but for how much the
pairing tends to propagate delay. If there is enough slack allocated for a flight that is likely to be
delayed, then the delay propagation value is low. The first phase of the model allows for a
tradeoff between scheduling with minimal costs, or scheduling with more slack for flights that
need the slack. The algorithm for the calculation of the delay propagation value of each pairing
is shown in Algorithm 1.

Algorithm 1: Calculation of the delay propagation value of a pairing

Set F as the set of flights that are part of a pairing p

Set f as the first flight

Set DPs as the delay propagation after flight /

DP; =0

While (f € F) do{
Calculate the slack time between flight f and the flight after by obtaining the difference in scheduled arrival of
the first flight and the scheduled departure of the next flight, and subtracting the minimum ground connection
time g
DP; = max (DP; + delay of flight f — slack time, 0)
Set f as the next flight

}
Set DB, as the average of all DP; such that f € F

3.4 Second phase: Crew swap contingencies

The second phase involves the selection of the crew swaps into the solution. It gets the
outputs from the first phase of pairing selection, and uses these as inputs. These inputs determine
the best crew swaps possible for mitigating delay propagation.

Min Z Z Z Z @(DP, , DPy)sgopryy (8)

feEF f'€F peP p’eP

Objective function ( 8 ) maximizes the number of swaps that can be implemented for the
schedule. For a crew swap to be considered in the model, the first pairing should have a high
delay propagation value and the second pairing should have a low delay propagation value. The
function ¢ calculates the value of a swap. The value of a swap is higher when the delay
propagation of the first pairing is higher and the delay propagation of the second pairing is lower.
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This is because when the two pairings to be swapped have a large difference in delay
propagation, it is more likely that swapping will allow for better absorption and distribution of
delays. The function ¢ is shown graphically in Figure 6. The value of a swap is zero when the
delay propagation for the first pairing is zero when it is below a minimum. The value of a swap
also becomes zero when the delay propagation for the second pairing when it is above a
maximum.

09|
08 F
07 F

06 F

S
o

o
o
Value of Swap
=)
vy

o
[N)

0.3

0.2 60

30
1
DP - Second Pairing (minutes) 60 DP - First Pairing (minutes)

Figure 6. Plot of function @ that calculates for the value of crew swaps

The following mathematical expressions are the constraints of the model formulated:

Stpr'p’ < Xp vi,f' €F; vp,p'eP; f=f"; p#p’ (9)
Stpf'p’ < Xp/ vf,f' €F; vp,p'eP; f=f'; p#p’ (10)
Toon + 8 < dp + M(1 = sgprr) vif'€F; vp,p €P; f=f; p*p (11)
rpp(f)+g5df+M(1—Sfpf'p') vi,f' €F; Vp,p'€P; f=f'; p*p’ (12)
Sepe'p’ = aPp, (p)f’ vi,f' €F; vp,p'€P; f=f'; p*p’ (13)
ACC, () p + PNDpryr < reg + M(1 = sgeryr) Vi f' €F; Vp,p'€P; f=f; p=p (14)
ACC, ,(ryp' + PNDgp, < reg + M(1 - Sfpf'p') Vi f' €F; Vp,p' €P; f#f; p#p (15)
ACCrp = b +ry(qep) ~ du(aitp) vfEF; Vp,€P (16)
PND¢, = Iy (r(tp)) ~ da(R(f,p)) +b’ vfeF; vp,eP (17)
Stprp’ < hbppr vif' €F; vp,p'€P; f#f; p#p’ (18)
Stpf'p’ < Yip vf,f' €F; vp,p'eP; f=f'; p#p’ (19)
Stpfp’ = Yap! vi,f' €F; Vp,p'€P; f=f'; p*p’ (20)
DP, = dpmin — M(1 — y1p) vpEP (21)
DP, < dpmax + M(1 — y2p) vpEP (22)
ACCg, = 0,PNDg, = 0,500, € {0,1}, yip € (0,1} (23)

Constraints (9 ) and ( 10 ) ensure that swaps can only be possible if the pairings of the two
flights being swapped are chosen. Constraints ( 11 ) and ( 12 ) ensure that swaps are possible
only if the minimum ground connection times are followed. Constraint ( 13 ) ensures that swaps
are possible only if the arrival airport of the incoming flight f is the same as the departure airport
of the outgoing flight f*. Constraints ( 14 ) and ( 15 ) ensure that the maximum duty hours of
pilots are not violated upon swapping. Constraints ( 16 ) and ( 17 ) calculate the accumulated
and pending hours system variables respectively. These system variables are necessary for
determining whether or not the maximum duty hours of the crew are violated upon swapping.
Constraint ( 18 ) ensures that swaps can only be considered if the pairings have the same home
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base. This ensures that the crew can go back to their home base as scheduled. Constraints ( 19 ),
(20), (21), and ( 22 )restrict swaps such that the first pairing has high delay propagation, and
the second pairing with low delay propagation (and consequently high slack). A minimum delay
propagation value is set for the first pairing in dpp,i,. A maximum delay propagation is set for
the second pairing in dp,,x. This allows for the swaps to absorb delays and prevent them from
propagating forward. Lastly, constraint ( 23 ) ensures the bounds for the values of all variables.

4  Methodology for solving large problems

A set partitioning formulation is used for the crew pairing problem. This model formulation
chooses pairings from a set of generated pairings that minimize costs while ensuring that all
flights are covered by exactly one pairing. However, the generation of the pairings themselves
is exponentially difficult depending on the size of the system. Even a small number of flights
will have an exponentially large number of pairings. As such, efficient methods must be made
for solving realistic problems.

4.1 Flight subsequences

To generate the pairings needed in solving, the subsequences are first obtained for each
flight. Subsequences are the flights that can follow a certain flight in a duty period, meeting
connection time, duty period length, and location constraints. Establishing the subsequences of
each flight allow for faster search and generation of pairings because the computer bypasses
searching the entire set of flights for each iteration. Algorithm 2 shows the algorithm used to
obtain the subsequences of each flight. In the generation of subsequences, a time window is used
to limit the subsequences that are available to flights. A time window specifies a minimum and
maximum connection time, the former determined by the legal minimum ground connection
time for flight turnarounds, plus a set slack time, and the latter determined by what is deemed as
feasible and efficient by the planner. By setting this window, the number of pairings to be
generated is exponentially decreased, while likely not affecting the optimal solution. The
representation of setting this time window to limit subsequences is shown in Figure 7.

Algorithm 2: Obtaining subsequences of each flight

Set F as the set of flights
Set f; as the first flight
While (f; € F) do{
Set f, as the first flight
While (f, € F) do{
If (f;, = f,) then break and choose next flight for f,
Else { If f, can follow f; in a duty period, such that it follows connection time constraints, duty period
length constraints, and location constraints
Then set f, as a subsequence of f; and choose next flight for f,
Else choose next flight for f,

| }
Choose next flight for f;

1
Enumerate all subsequences of each flight

c
Time Connection Time

« « A « > Incoming Flight

Allowed Legal
Outgoing Flight

== == =p Disallowed
i Flight by
Wl}'lmc Subsequence
indow Limitation

Figure 7: Limiting subsequences of flights by establishing a time window
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4.2 Duty tree construction

After generating the subsequences, a duty tree is used to produce the duty periods for
generating pairings. The subsequences are used as the building blocks for the duty periods, while
the duty periods will be used as the building blocks for the pairings. The duty tree is limited by
the maximum number of flights in a duty. Algorithm 3 shows the algorithm used to obtain the
valid duty periods of a set of flights.

Duty tree construction can be sped up and limited by specifying the starting and ending
locations of the duty periods it generates. A duty period always starts and ends at either a location
that is a home base for crew, or at a location that crew stay at for long rests. In a typical airline
setting, the home bases are set, and the locations for long rests can be indicated by the planner.
For example, a location that is in the rural province that is a 2-hour drive from a major city will
never be a starting or ending point of a duty period. It will always be less costly for the airline,
and more convenient for the crew, to start and end duty periods at the major city. A major city
has more flights connecting through, and thus, any crew that stays here can be more flexibly
scheduled. By specifying the home bases and the locations wherein long rests can occur, the
number of duty periods can be reduced dramatically. A hub-and-spoke network will have a
significantly larger number of spokes than hubs. If the locations for the starting and ending points
of duty periods can be limited to the hubs and a few far-off spokes in an airline network, the
duty periods that can be generated will be significantly limited while not affecting the optimal
solution.

Algorithm 3: Constructing duty tree and valid duty periods

Set F as the set of flights
Set C; as the set of subsequences for flight i
Set maxflights as the maximum number of flights in a duty
Set f; as the first flight
While (f; € F) do{
If the series [ f; ] satisfies constraints on duty period length then series [ f; ] is a valid duty period
Set f, as the first flight among subsequences of f;
While (f, € C,) dof
If the series [ f;, f; ] satisfies constraints on duty period length then series [ f;, f, ] is a valid duty period
Set f; as the first flight among subsequences of f,

While (fmaxfl‘i‘ghts € Cmaxflights—l) d(){ . . .
If theseries [ fi, f2, ..., fmaxfiights—1 > fmaxfiignes | satisfies constraints on duty period length

Then series [ f.l’ fos s fmaxf”ghm_l s fmaxf”ghm] is a valid duty period
Choose next flight for f,,qxf1ignes

}
Choose next flight for f,

}
Choose next flight for f;

}
Establish duty tree based on valid duty periods

4.3 Progressive pairing generation

A concept on column generation can be used to take advantage of the set partitioning model
formulation in order to shorten the solution time. Column generation is used when the number
of columns in a problem (or the number of possible solutions) is very large. This is typically the
case for set partitioning problems. Solution difficulty comes from the large number of possible
solutions. If columns were generated iteratively, then the problem can be solved with greater
tractability, even though there is no assurance of optimality. The guide for the generation of
pairings is the hierarchy of how preferable the types of pairings are. Single-duty pairings are
most preferred, then multiple-duty pairings, then pairings that include deadhead. Deadhead is
the movement of crew on existing commercial flights of the airline as passengers, but as required
by their schedule set by the company and count as working hours with regard to satisfying

-113-



8th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2017)
5-8 December 2017, Kuala Lumpur, Malaysia

regulatory constraints. A progressive process for generation of pairings can be implemented.
The steps for progressive pairing generation is shown in Figure 8.

Initial solution Generate pairings
(each flight is its own —»]  with single duty
pairing) periods. Solve.

Yes
l Find valid
Remove flights that Generate pairings c;gr':‘bc‘;‘::f’}z ‘I}W Re-solve with new
have a feasible > with multiple duty > & eriod airing s and > pairings, eliminate contain infeasible Nor
pairing from problem periods. Solve. P pairings unused pairings pairings?

multiple duty period
pairings

Yes

| Generate Find valid
pairings ideri binations of
Remove flights that deadheads. generated single duty Re-solve with new
have a feasible ~ [— Deadhead flights can ——»|  period pairings, [—] pairings, eliminate contain infeasible No @
pairing from problem only come from multiple duty period unused pairings pairings?
flights with pairings. pairings, and
Solve. deadheads

Yes

Reevaluate flights
that still have no
feasible pairing, and
revise timetable.

Figure 8: Progressive pairing generation flowchart

The solution methodology starts with an initial solution wherein the flights are each in their
own pairing. These are artificial and infeasible pairings to be replaced by feasible ones by the
end of the process.

Next is generating pairings that have only one duty period. This means that these pairings
will start and end at only a handful of locations that are designated as home bases. The creation
of the duty trees becomes much less complex when there are only a handful of possible source
locations, realistically less than ten for a major airline, as opposed to considering the hundreds
of locations an airline can realistically fly to. The flights covered by a feasible pairing are
removed from the problem.

The number of duty periods to consider in the pairing is increased. This continues until the
methodology considers pairings with the maximum number of duties possible, as set by the
airline. After solving, a set of single duty period pairings and multiple duty period pairings are
obtained. The pairings are evaluated as to whether it is possible to combine them to obtain a
lower cost. For example, a single duty period pairing can be placed at the beginning of another
pairing so that two pairings result into a single longer pairing.

If after considering single and multiple duty period pairings there are still infeasible flights,
deadheading pairings are evaluated. Deadheading is only considered on flights that have already
been scheduled to a pairing, in order to cater to flights that have yet to be scheduled to a pairing.
After generating the pairings, the problem is re-solved. If after this the problem remains
infeasible, there is a need to manually alter the timetable of the said flights in order to fit them
into a feasible pairing.

5 Results and discussion

5.1 Solution of trivial data
For the validation of the model, a hypothetical set of data is used. Shown in Table 1 are the

basic of each flight. The hypothetical flight schedule, referred to as Hypothetical Phils connects
four airports in the Philippines: Zamboanga (ZAM), Tuguegarao (TUG), Manila (MNL), and
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Cebu (CEB). This data is trivial, containing only sixteen flights with CEB and MNL acting as
high-density ports while ZAM and TUG act as low-density ports.

Pairings were generated based on the flight schedule. It is assumed that a crew base can
exist in all four airports. Two solutions for Hypothetical Phils are obtained, one using the
traditional model, and one using the robust crew pairing model. The traditional model obtains a
lower planned cost than the robust crew pairing model, as expected.

A scenario is applied to the schedule for Hypothetical Phils based on the input parameters
and locations of the flights, wherein flights coming and going to hubs are more likely to be
delayed. The scenario assigns independent local delays for each flight. If connecting resources
are present between two flights (same crew with insufficient remaining time to connect), delay
will propagate. A minimum ground connection time of 25 minutes is used. If the time between
the actual arrival of the previous flight and the scheduled departure of the next flight is less than
this, the next flight is delayed.

The number of minutes each flight is delayed for for the two solutions are presented in
Figure 9. For many of the flights the deviations in the schedule were often greater for the
traditional model solution. Flights 12 was the only flight that was larger in delay for the robust
crew pairing model solution as compared to the traditional model solution.
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Traditional Model Solution ® Robust Crew Pairing Model Solution

Figure 9: Flight delay (minutes) of each solution obtained for each Hypothetical Phils flight

For both solutions, there was a steady increase in delays from flights 1 through 8. This is
because of the short connection time between these flights, and that these flights are between
high density hubs. This makes it more likely that these flights become delayed. Swaps taken by
the crew pairings in the robust solution were able to lessen the effects of delay propagation.
Therefore, despite the additional increase in planned cost, the overall reduction in delay may
make it the more desirable solution.

Table 2 shows the comparisons for costs and delays for the two obtained solutions. The
cost is obtained using a cost structure based on the duty period lengths (including overtime and
fatigue) that simulates crew pay. While planned costs are higher for the robust solution, it has a
significantly lower total delay. Even more important is that the traditional model solution has
50% of its flights (8 out of 16) perceived as being late (delayed for more than 15 minutes), and
2 of those flights are perceived being very late (delayed for more than 30 minutes). On the other
hand, the crew swap model solution has only 3 of its flight as perceived as late, and none of its
flights being excessively late.

This solution serves as a trivial example for showing the effect of mitigation of delay
propagation through slack times and crew swaps on an individual flight basis.
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Table 2: Cost and delay comparison between the traditional CPP and the crew swap model solutions
Traditional CPP Solution  Crew Swap Model Solution

Planned Cost 17,654 19,830
Total Delay in minutes 184 119
Number of flights delayed | 8 3

for more than 15 minutes

Number of flights delayed | 2 0

for more than 30 minutes

5.2 Solution of 1890-flight crew pairing problem

Computational experiments for the solution of realistic data were carried out on a desktop
PC with an Intel Core i3 processor with 8GB RAM. The MATLAB Integer Linear Programming
solver is used. Each solution of the 1890-flight crew pairing problem from a real airline that
spans one week of operations had solution times between 60 to 90 seconds each.

Results for the traditional model in the form of a crew pairing schedule were obtained. To
evaluate these crew pairings, they were run through a Monte Carlo Simulation. Data on historical
delays of flights were used to obtain the simulated delays for the flights. The pairings constructed
determined the propagation of delays. The results for these are shown in Table 3.

Table 3: Monte Carlo simulation results of schedule constructed from the traditional crew pairing model

Planned Cost 695,805.65
Total Delay 48,364.88 minutes
Flights with delays less than or equal to 15 minutes | 608 flights
Flights with 15 minutes < delay < 30 minutes 642 flights
Flights with 30 minutes < delay < 45 minutes 381 flights
Flights with 45 minutes < delay < 60 minutes 159 flights
Flights with delays more than 60 minutes 100 flights

The robust model in this research resolves its multiple objective functions (minimizing cost
and maximizing robustness) by using a user-inputted weight. By varying this weight and
obtaining different solutions, solutions of different robustness levels and planned costs are
obtained. The robust crew pairing model obtains a large number of solutions by increasing the
weight. The next solution obtained is more robust than the last one, but also more expensive in
planned costs. Each solution is a set of crew pairings constructed by the model that caters to all
flights.

A function is needed to evaluate the severity of a flight delay that properly reflects the costs
of flight delay minutes to the airline. A function proposed for the customer’s propensity to switch
airlines from a given airline [4] is used as the basis for this function. The graph for this is shown
in Figure 10. The ‘S’ shape curve of this function is based on the Kano model that defines a
three-tier approach to customer satisfaction requirements [17]. The ‘S’ shape curve shows that
a small level of delay is insignificant, the significance of the delay increases once the delay
moves past what is tolerable to the customer, and plateaus when delay is very high.

The function to evaluate the severity of a flight delay is shown in expression ( 24 ). The
variable /4 is the hypothetical cost of delay set by the crew planner, and the variable d is the delay
of the flight in minutes.

h(l + 34-5—0.07(d1-12))—1 )
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Figure 10: 'S’ shape function for evaluating severity of flight delay

After evaluating the flight delays using this function, the delays of each flight in each
pairing can be converted to a hypothetical cost of delay. The total cost of each pairing is, the
sum of the planned cost of the pairings and their hypothetical costs of delay. Shown in Figure
11 is the graph showing the solutions plotted based on their planned costs and costs of delay. An
optimal isocost line is shown to intersect with the optimal solution. This is in comparison to the
solution with the minimized planned cost obtained from the traditional model and does not take
into account delays.

Planned Cost vs Hypothetical Cost of Delay of Possible Solutions
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Figure 11: Optimal solution obtained balancing planned cost and cost of delay

The optimal solution from the robust crew pairing model has a higher planned cost, but a
lower delay cost. This is compared to the solution for minimizing the planned cost from the
traditional model. The planned cost is as minimized as it can be, but the delay cost is higher.
Due to not being able to recognize that delays have costs for the airline, most airlines implement
the solution with the minimized planned cost. This is from a lack of foresight and initiative to
try to minimize delays even before the flight happens. Most airlines simply handle delays after
the fact, when the flight has been flown.

Shown in Figure 12 are the results of the Monte Carlo simulations for the optimal robust
solution from the robust crew pairing model, and the minimized planned cost solution from the
traditional crew pairing model. The number of flights delayed by more than an hour goes from
100 flights to 51 flights when implementing the optimal robust solution. Likewise, the number
of flights delayed by 45 minutes to an hour goes from 159 to 133 flights. The flights delayed by
30 to 45 minutes remain relatively unchanged from 381 to 383 flights. The flights delayed by 30
minutes or less increase significantly using the optimal robust solution.
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Delay Magnitude of Flights
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Figure 12: Delay magnitude of flights for optimal robust and minimized planned cost solution

It is clear that the delay performance of the optimal robust solution is better than that of the
minimized planned cost solution. Implementing the robust solution results in the planned cost
increasing by 1.26%. This increase in planned cost is clearly insignificant compared to the
potential improvement in delay performance that can be obtained by using the optimal robust
solution.

It should be noted that the cost of delay presented is hypothetical. While literature exists
that delays should have a cost based on an ‘S’ shape curve, the multiplier / in the mathematical
function ( 24 ) is entirely hypothetical. Research would have to be conducted to determine the
proper value for this constant. The value for this constant may vary depending on a number of
factors, including the reputation of the airline, the state of competitors of the airline, the
geographical location, and the way the airline handles delays. For example, an airline that has
prepared meticulous steps for satisfying passengers when delays occur (possibly in the form of
discounts or mileage) will have more tangible costs from delay as opposed to just the cost of
loss of customer loyalty. An airline that has no competitors in the area will have low costs of
delay because customers will have no other airline to choose from, and therefore the loss of
loyalty is low. A low-cost carrier that has a reputation for late flights would have lower costs for
loss of loyalty because the customers are more particular of obtaining the lowest costs possible,
rather than the punctuality of flights. These factors dictate that the proper determination of the
cost of delay is important for the robust model presented to be effective. Because the factors for
the cost of delay vary greatly depending on the situation, it is important that this cost of delay
be established by the airline through research, data analytics of passengers, surveys, analysis of
competition, etc., before implementing methods that can deal with robustness.

This also gives greater importance to the use of a Monte Carlo simulation. Because the costs
of delay are hypothetical, it is more difficult to evaluate the validity of a numerical cost attributed
to the delay of flights. However, being able to conduct simulations and dictate the number of
flights delayed by certain magnitudes, as shown in Figure 12, is more tangible and is likely better
for airline management to use for making decisions.

6 Conclusions

Delays have been more and more caused, not by natural unforeseen circumstances, but by
the inability of airlines to plan for delays caused by the inefficiencies of their own operations.
Disruptions that occur locally can propagate delays to connecting flights. The majority of
existing literature focuses on recovery from disruptions. Most approaches try to bring a schedule
as quick as possible back to its original schedule, which is not cost-effective. Given the data
available to modern airlines, it is now possible and even more appropriate to use this data to plan
for disruptions as a form or proactive disruption management.
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Crew pairing is the most complex among the airline resource planning processes, due to
human fatigue constraints and the large amount of crew and flights to consider. Adding a level
of complexity by planning for robustness makes the existing formulation of the problem difficult
to solve using existing algorithms. An algorithm that takes advantage of the structure of crew
pairings was developed that could obtain solutions with no assurance of optimality in tractable
time even for large problems. Progressive pairing generation, the solution methodology
formulated to solve large crew pairing problems, generates the pairings based on a hierarchy of
what is usually easier and more cost effective to implement.

A two-phase robust crew pairing model was developed. The first phase has two objectives
— minimization of costs and maximization of robustness — which are resolved by using a user-
inputted weight. The second phase finds crew swaps in the model for added flexibility. It was
seen that the tradeoff of costs and robustness resulted into solutions that had an asymptotic trend.
There is a point wherein the increase in cost when generating a solution is no longer justifiable
for its increase in robustness. To resolve the robustness-cost tradeoff, a function is introduced
that gives an equivalent monetary cost to a delayed flight. The function follows an ‘S’ curve,
maintaining the characteristic that minor delays are tolerable while major delays are intolerable
and costly for the airline. It emphasizes that delay is not linearly related to costs and encourages
the model to spread delays, primarily through crew swaps, among different flights rather than
allowing it to propagate on one pairing.

The robust model developed is able to create a crew pairing schedule that incorporates
robustness such that it performs well under disruptions. The solution of the model contains the
flights that belong to the same pairing, the sequencing of the flights, and the crew swaps that
could be taken should it be necessary. Progressive pairing generation was used in order to solve
the model in tractable time. Each solution, as the user-inputted weight in the model was varied,
took within 60 to 90 seconds of computation for a set of 1890 flights. The set of 1890 flights are
one week’s operations of a major airline.

Moving forward, research on formalizing the cost of flight delays would be important in
any robust planning for airline operations. A formalized method on costing of flight delays could
be used to provide tangible value to robustness, rather than relying on hypothetical inputs from
the crew planner. An integrated approach to airline resource planning with robustness may also
be explored. One of the assumptions in this model is that a crew member always has an aircraft
available. This is an unrealistic assumption, though it is standard for crew pairing literature.
Developing an integrated approach to robust planning of aircraft and crew would remove the
need for this assumption.

Another recommendation for future research is to benchmark this methodology using other
column generation, or possibly even genetic algorithm techniques. This research benchmarks
the methodology proposed for solving big problems against the optimal set partitioning linear
programming methodology. It has long been known that this optimal methodology takes too
long for large problems. As such, it would be beneficial to benchmark the progressive pairing
methodology proposed here to other methodologies in literature that have gained traction in the
field.
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Integer programming for home care scheduling with
flexible task frequency and controllable processing times

Pieter Smet .- Federico Mosquera - Tilio
A. M. Toffolo - Greet Vanden Berghe

Abstract Home care scheduling integrates the assignment, sequencing and schedul-
ing of caregivers to household tasks subject to a range of operational constraints and
objectives. Due to the increased scale and complexity of client requests, decision sup-
port models have become an indispensable tool for management to efficiently deploy
available staff. The present paper introduces a time-indexed integer programming for-
mulation for multi-period home care scheduling while considering both flexible task
frequency and controllable processing times. Both of these novel characteristics are
common in practice, but have never been considered by previous academic models. By
using two modeling tools, activity modes and task patterns, these characteristics may
be integrated without any assumptions on their cost functions or general structure.
Extensive computational experiments are performed to analyze the new formulation’s
performance on practical problem instances. The results confirm that it is possible to
solve realistically-sized instances consisting of 25 caregivers and 100 tasks to optimality
within acceptable computation time.

1 Introduction

As home care is steadily becoming the primary source of care for elderly people, there
is a high demand which is increasingly difficult for home care organizations to sat-
isfy. Rich decision support models are quickly becoming indispensable for home care
organizations in order to effectively manage their available staff. In short, home care
scheduling concerns the scheduling and assignment of skilled caregivers to various tasks
at different clients’ homes. The underlying optimization problem integrates assignment,
sequencing and scheduling decisions, subject to a variety of personal and organizational
constraints and objectives. Due to its practical relevance and increased impact in re-
cent years, home care scheduling has received considerable attention in the academic
literature (Fikar and Hirsch, 2016).

The present paper introduces a new integer programming model for scheduling care-
givers in a multi-period setting within which the schedules are constructed for multiple
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consecutive days. The proposed model employs time-indexed decision variables, which
are known to result in tight linear programming relaxations for scheduling problems
(Van den Akker et al, 2000). Tasks are used as an abstract concept which generalize
client care requirements. Each task is associated with skill requirements and must be
performed multiple times during the scheduling period. Skill structure is modeled in a
general way such that both hierarchical and arbitrary structures may be considered.
Various other real-world problem characteristics are included such as availabilities,
personal preferences and idle time.

Travel time is an objective commonly considered by academic models for home
(health) care scheduling (Akjiratikarl et al, 2007; Liu et al, 2014; Maya Duque et al,
2015). The proposed model, however, does not explicitly minimize travel time for a
number of reasons. Firstly, home care tasks, such as housekeeping or accompanying a
client to a social activity, are typically very time-consuming. Consequently, caregivers
visit a small number of clients per day, thereby limiting the number of times they
must travel between clients. Secondly, within real-world problem instances, clients are
often clustered in, for example, municipalities. The distance between clients within a
cluster is typically relatively small compared to the distance between clients in different
clusters. The proposed model thus does not explicitly minimize travel time but instead
forbids caregivers to visit clients associated with different clusters on the same day.

Scheduling flexibility is emphasized by considering flexible task frequency (how
many times a task is scheduled) and controllable processing times (the duration of
each scheduled task). For both of these properties, general cost functions may be de-
fined which model the cost of scheduling a task fewer times than required or schedul-
ing a task for less time than required. When considered independently, task rejection
and controllable processing times are known to make polynomially solvable machine
scheduling problems NP-hard (Shabtay and Steiner, 2007; Shabtay et al, 2013). While
these types of flexibility are common practice in home care organizations, there are no
academic models integrating these two properties.

The majority of studies throughout the academic literature address the daily schedul-
ing problem in which only a single period is considered (Rasmussen et al, 2012; Yuan
et al, 2015; Braekers et al, 2016). Only a few authors solve the problem in a multi-
period setting. However, considering multiple days is essential as home care scheduling
concerns human resources. Consequently, not only capacity is important, but also, for
example, sequence, frequency, continuity, assignment spreading and variation of as-
signments. Begur et al (1997) describe an early implementation of a decision support
system for a real-world home care scheduling problem. The problem is addressed by
heuristically solving a series of daily scheduling problems with varying visiting pat-
terns. Such patterns are also used by Cappanera and Scutella (2014) in an integer
programming model for scheduling visits to palliative patients. Trautsamwieser and
Hirsch (2014) present a branch-price-and-cut algorithm for a weekly scheduling prob-
lem. Their model includes a number of employee scheduling constraints concerning
breaks and rest time which allow for flexible working hours. Finally, Nickel et al (2012)
address the planning of home care services at different time horizons. They present a
metaheuristic approach based on constraint programming for both mid- and short-term
planning. There are no approaches in the state of the art academic literature which
consider flexibility both in terms of frequency and duration.

The remainder of this paper is organized as follows. Section 2 presents a formal
definition of the considered home care scheduling problem. Section 3 introduces the
proposed time-indexed integer programming formulation along with detailed examples
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of the novel modeling tools which it includes. Section 4 analyzes a series of computa-
tional experiments to gain various insights concerning the model’s performance. Finally,
Section 5 concludes the paper and identifies areas for future research.

2 Problem definition

Let D = {1,...,|D|} be a set of consecutive days which define the scheduling period
and let E = {1,...,|E|} be the set of caregivers. The availability of caregiver e € E
on day d € D is defined as a hard time window [be_d,b:d) with 0 < b_,; < b:d. The
tasks to be scheduled are denoted by J = {1, ...,|J|}. For each task j, let E; C E be
the subset of caregivers who meet the skill requirements. The time window in which
task j may be scheduled on day d is denoted by [bj_d, bj'd) with 0 < bj_d < b;'d. Let aje
be the cost of assigning task j to caregiver e which represents several soft preferences
such as pet allergies, gender or language proficiency. Travel restrictions for caregivers
are defined by the set J, which contains pairs of tasks (4,7") which cannot be assigned
to the same caregiver on the same day. Typically, (J, j/) € J if the travel time between
the locations of j and j’ exceeds some given bound.

Each task j € J must be scheduled f; times during the scheduling period. Note that
tasks cannot be scheduled more than this frequency. A cost function pg : [0, f;‘] - R

defines the cost when task j is scheduled x times. The precise definition of pf (z)
depends on the application context where, for example, scheduling a task at least once
may be of prime importance, whereas reaching the desired frequency is not critical,
or vice versa. Figure la illustrates examples of piecewise linear and non-linear cost
functions which may be used to model frequency cost. Note that pf (z) is not assumed
to be monotonically decreasing but, in practice, often will be.

Each time task j € J is scheduled, its duration should be between dj_ and d;',
with both bounds considered hard constraints. Similar to the task frequency, a cost
function p;-l : [d;, d;r] — R defines the cost of scheduling task j with duration z. Figure

1b shows examples of p? (z) whose definition is, again, strongly context-dependent and
typically monotonically decreasing.

Cost
Cost

Times assigned f; dj’

. +
Duration d;

(a) Frequency cost functions (b) Duration cost functions

Fig. 1: Examples of cost functions for flexible frequency and controllable processing
times.
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The objective function to be minimized is a weighted sum of five objectives: (i)
frequency cost as calculated by p;—c(m)7 (ii) duration cost as calculated by p?(m), (iii)
the sum of assignment costs aje, (iv) caregiver idle time and (v) task spreading cost.
Each of these objectives has a weight wy,ws, ..., ws associated with it.

Task spreading ensures that the days on which a task is scheduled are distributed
evenly throughout the scheduling period. This is an important objective in practice,
where visiting the same client on two consecutive days is generally undesirable. The cost
related to task spreading is calculated as the absolute value of the difference between
the ideal task spread and the actual number of days between two scheduled tasks. The
ideal spread is defined as the quotient of the length of the scheduling period and the
number of times the task is scheduled, rounded down to the nearest integer.

Example 1 Consider a task j; € J which is scheduled three times throughout a one-
week scheduling period, as illustrated in Figure 2. The ideal spread is calculated as
{%J = 2, which means that ideally there will be exactly two days between each time j;
is scheduled. Examining the solution in Figure 2 shows that there are two days between
the first and second occurrence of j; but only one day between the second and third
occurrence. The total spreading cost is therefore |2 — 2| + ]2 — 1| = 1.

Mon Tue Wed Thu Fri Sat Sun

i i 1

2 daysin between 1 day in between

Fig. 2: Example of task spreading

Note that, if j; was scheduled, for example, on Monday and Tuesday, the number
of days in between these two occurrences would be zero and the task spreading cost
would be | L%J -0 =3.

3 Time-indexed integer linear programming formulation

A time-indexed integer programming formulation is proposed in which scheduling pe-
riod D is discretized into time-slots based on some given granularity ¢. Let T =
{1,...,|T|} be the set of time-slots representing the complete scheduling period. The
subset, of time-slots associated with day d is denoted as T,. The problem’s two novel
complex elements, controllable processing times and flexible task frequency, are mod-
eled as activity modes and task patterns, respectively.

Activity modes are commonly used in resource-constrained project scheduling prob-
lems (Wauters et al, 2016). Let M; = {1,...,|M|} be the set of feasible modes for task
J, djm the duration of task j in mode m € M; and pj,, = p?(dj ) the cost for using
mode m € M; (Brucker et al, 1999).

Example 2 Consider a task j; € J with d;l = 60 mins and dt = 240 mins. Given a
time granularity ¢ = 15 mins, task j1 has 13 activity modes in the set M;, = {1,...,13}.
The duration of each mode m € Mj, is calculated as dj, m = d;, + (m —1)¢, such that
dj,1 = 60 mins, dj, 2 = 75 mins, dj,;3 = 90 mins, ..., dj;13 = 240 mins.
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Task patterns are binary vectors used to represent the days on which a task is
scheduled in the scheduling period. Let R = {1,...,|R|} be the set of all possible
patterns with |R| = 2lPl A binary value h,g equals one if day d € D is an element of
pattern . The number of days in pattern r is denoted by ¢,. Note that R also includes
an empty pattern which has gr = 0. Let R; C R be the (sub)set of patterns which
may be selected for task j such that ¢ < f;r,Vr € R;. The cost nj, associated with

selecting pattern r for task j is calculated as the weighted sum of pf
of days in r. Finally, let k... be the number of days for which patterns r and r’ overlap.

(¢r) and the spread

Example 3 For |D| = 7, consider the pattern (1,0,0,1,1,0,0) in which a task is
scheduled on the first, fourth and fifth day of the scheduling period. When selecting this
pattern for task j; € J with f;l' = 4 and weights w1 = 5 and ws = 2 , the unweighted
pattern assignment cost is calculated as nj, , = 5(4—3)+2 (( \_%J -2)+ (L%J - 0)) =9.
The first term calculates the frequency cost, while the second and third terms attribute
the task spread to the pattern cost.

The time-indexed formulation uses a number of additional sets. Let Sjneq be the set
of feasible start time-slots for task 7 in mode m if assigned to caregiver e on day d, which
considers the time windows of both the task and caregiver. Let Sjye = UdeD Simed
be the union of feasible start time-slots over all days in the scheduling period. Note
that Sjpme = 0 if caregiver e is unqualified for task j. Finally, the set Ojmes contains
all feasible start time-slots for task j in mode m that overlap with time-slot ¢ when
assigned to caregiver e.

The proposed formulation uses the following decision variables:

1 if task j is assigned to caregiver e in mode m starting at time-slot ¢
Timet = :
0 otherwise

4 |1 if pattern r is selected for task j
Yir T 10  otherwise
2,y = start time of the first task of caregiver e on day d
z:d = end time of the last task of caregiver e on day d

idle.q = total idle time for caregiver e on day d

The objective function (1) is a weighted sum of (i) preference costs, (ii) deviation
from preferred task duration, (iii) pattern assignment cost and (iv) idle time. Note that
weights wi,w2 and ws do not explicitly appear in the objective function as they are
captured by mode and pattern costs.

minimize Z Z Z Z (wgaje—i—pjm)xjmet—FZ Z Njryjr+wa Z Z tdleeq
jETMEM; e€EtE€S me jEJTTER, e€EdeD

1)

Constraints (2) ensure that each task is scheduled at most once per day, and that at

most one mode and one caregiver are selected. Constraints (3) forbid scheduled tasks
to overlap.
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Z Z Z Tjmet < 1 VjelJdeD 2)

MEM; e€EEt€Sjmea

Y > Timer <1 Vec E,de D,t €T, (3)

FETMEM; /€0 met

Constraints (4) update the start time variable z_, based on the first scheduled task
for each caregiver e on each day d. Constraints (5) update end time variable z:d based
on the last scheduled task for each caregiver e on each day d. Constraints (6) calculate
the total idle time per caregiver per day as the difference between the end time and
start time minus the total duration of scheduled tasks.

SN0 tmimazzy bl 1= > > jme| Vi€JecEdeD

meM; t€Sjmed MEM; t€S jmea
(4)
SN t+dim)vime < 23y VjeJecEdeD
m€M7 tGSjmed
(5)
iz — > > Y djmTjmer = idlecg Vee E,de D
JjE€EI MEM; tESjmed
(6)

Constraints (7) select one pattern per task. Constraints (8) ensure that the number
of task start times equals the number of days in the selected pattern. Constraints (9)
link the days of the start time variables to the days of the selected pattern.

S yp=1 vied (7)
rER;

DD DL mme= ) arui vies ()
e€cEmeM; tcSjme r€R;

DD > D hdwme= Y kerype  Vi€dreR;  (9)
e€E deED meM; tESjmea r'ER;

Constraints (10) restrict forbidden task combinations to be assigned to the same
caregiver on the same day.

S>> Tpmat Y, Y. Tyma <1 VecE,deD,(jj)e (10)

mEM; t€Sjmed meM;, tES'j/

med

Finally, Constraints (11)-(13) define the bounds on the decision variables.

Tjmet € {0,1} Vj e J,mEMj,(BEE,tESjme (11)
yir € {0,1} VjeJreR; (12)
2o 2d, ddlecg >0 VjeJeeEdeD (13)
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4 Computational experiments
4.1 Data set and experimental setup

Given the lack of publicly-available benchmark instances for this problem, an instance
generator was developed which allows to generate problem instances in a controlled
manner. Several real-world problem characteristics which were observed in practice are
included in the instance generator in order to obtain a realistic data set. Instances were
generated with 5, 15 and 25 caregivers. All instances consider a scheduling period of one
week in which daily caregiver availability was randomly generated to be between 9am
and 5pm, with deviations of up to 30 minutes permitted. The skill level of caregivers was
varied between 0.5 and 1.0, indicating the percentage of caregivers which are skilled
for each task. The number of tasks in an instance is determined by two interacting
parameters: task length and staffing ratio. Three task length categories were considered:
long (2h30m to 5h), medium-length (1h15m to 2h30m) and short (30m to 1h) tasks.
The staffing ratio is calculated as the fraction of total task demand over total caregiver
availability. If this value is less than one there is overstaffing and it is possible to
completely satisfy demand, otherwise there is understaffing which inevitably results
in unassigned tasks. The data set consists of two instance classes which have staffing
ratios of 1.1 (class A) and 1.6 (class B), thereby representing realistic scenarios. A
higher staffing ratio is obtained by increasing the task frequency while keeping the
task durations fixed. The weights in the objective function were set to w; = 10000,
wy = w3 = wqg = wy = 1 to reflect priorities used in practice. All instances are
publicly available at https://people.cs.kuleuven.be/~pieter.smet/homecare.html
to encourage future research. Table 1 details an overview of the two instance classes.

All experiments were conducted on a Dell Poweredge T620, 2x Intel Xeon E5-2670
with 128 GB RAM. Gurobi 7.0.2 was used as an integer programming solver, configured
to use eight threads with a time limit of ten hours. The time granularity was set to
¢ = 15 mins resulting in 672 time slots.

4.2 Computational results

Table 2 shows computational results for the instances in class A. Details concerning
both the linear programming (LP) relaxation and integer linear programming (ILP) for-
mulation are presented for each individual instance. If no feasible solution was obtained
within the allowed time limit, a dash (-) is shown. Optimal solutions are highlighted
in bold.

The results show that for instances with long tasks, optimal solutions are found
within reasonable calculation time. Even for the more challenging realistically-sized
instances with 25 caregivers, optimal solutions are found within 40 minutes. Note
that for these instances, branching proved unnecessary and the optimal solutions were
obtained by solving the root node. Instances with medium-length tasks were solved
(close) to optimality, with only a single instance showing a significant gap of 3.2%.
Finally, instances with short tasks presented the most challenging scenarios. With a
limited number of caregivers (5-15), these instances could be solved to optimality or
within a small gap of 0.6%. However, when considering 25 caregivers, feasible solutions
were not obtained consistently. Overall, there is no clear trend regarding the influence
of caregiver skill level on required calculation time.
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Instance  No. of No. of  Skill  Average Avg. no. Avg. min.  Avg. pref. Avg. no.  Staffing
caregivers  tasks level frequency of patterns duration duration of modes  ratio

A01 5 20 0.5 3.1 67.5 2h31m 4h59m 10.9 1.1
A02 5 20 0.7 3.1 67.5 2h31m 4h59m 10.9 1.1
A03 5 20 1.0 3.1 67.5 2h31m 4h59m 10.9 1.1
A04 5 30 0.5 4.0 94.3 1h15m 2h34m 6.3 1.1
A05 5 30 0.7 4.0 94.3 1h15m 2h34m 6.3 1.1
A06 5 30 1.0 4.0 94.3 1h15m 2h34m 6.3 1.1
A07 5 50 0.5 5.0 115.8 0h39m 1h13m 3.3 1.1
A08 5 50 0.7 5.0 115.8 0h39m 1h13m 3.3 1.1
A09 5 50 1.0 5.0 115.8 0h39m 1h13m 3.3 1.1
A10 15 60 0.5 3.1 66.9 2h28m 5h00m 11.1 1.1
All 15 60 0.7 3.1 66.9 2h28m 5h00m 11.1 1.1
Al2 15 60 1.0 3.1 66.9 2h28m 5h00m 11.1 1.1
Al13 15 90 0.5 4.1 97.1 1h12m 2h30m 6.2 1.1
Al4 15 90 0.7 4.1 97.1 1h12m 2h30m 6.2 1.1
Al5 15 90 1.0 4.1 97.1 1h12m 2h30m 6.2 1.1
Al6 15 150 0.5 5.3 119.2 0h37m 1h09m 3.2 1.1
A17 15 150 0.7 5.3 119.2 0h37m 1h09m 3.2 1.1
A18 15 150 1.0 5.3 119.2 0h37m 1h09m 3.2 1.1
A19 25 100 0.5 3.0 65.4 2h28m 5h03m 11.3 1.1
A20 25 100 0.7 3.0 65.4 2h28m 5h03m 11.3 1.1
A21 25 100 1.0 3.0 65.4 2h28m 5h03m 11.3 1.1
A22 25 150 0.5 4.2 98.7 1h16m 2h28m 5.8 1.1
A23 25 150 0.7 4.2 98.7 1h16m 2h28m 5.8 1.1
A24 25 150 1.0 4.2 98.7 1h16m 2h28m 5.8 .

A25 25 250 0.5 5.2 117.8 0h36m 1h10m 3.3 1.1
A26 25 250 0.7 5.2 117.8 0h36m 1h10m 3.3 1.1
A27 25 250 1.0 5.2 117.8 0h36m 1h10m 3.3 1.1
Bo1 5 20 0.5 4.0 99.0 2h30m 5h30m 13.0 1.6
B02 5 20 0.7 4.0 99.0 2h30m 5h30m 13.0 1.6
B03 5 20 1.0 4.0 99.0 2h30m 5h30m 13.0 1.6
B04 5 30 0.5 5.0 120.0 1h14m 2h59m 8.0 1.6
B05 5 30 0.7 5.0 120.0 1h14m 2h59m 8.0 1.6
B06 5 30 1.0 5.0 120.0 1h14m 2h59m 8.0 1.6
B07 5 50 0.5 6.0 127.0 0h37m 1h30m 4.5 1.6
B08 5 50 0.7 6.0 127.0 0h37m 1h30m 4.5 1.6
B09 5 50 1.0 6.0 127.0 0h37m 1h30m 4.5 1.6
B10 15 60 0.5 4.0 99.0 2h30m 5h30m 13.0 1.6
B11 15 60 0.7 4.0 99.0 2h30m 5h30m 13.0 1.6
B12 15 60 1.0 4.0 99.0 2h30m 5h30m 13.0 1.6
B13 15 90 0.5 5.0 120.0 1h14m 2h59m 8.0 1.6
B14 15 90 0.7 5.0 120.0 1h14m 2h59m 8.0 1.6
B15 15 90 1.0 5.0 120.0 1h14m 2h59m 8.0 1.6
B16 15 150 0.5 6.0 126.8 0h38m 1h29m 4.4 1.6
B17 15 150 0.7 6.0 126.8 0h38m 1h29m 4.4 1.6
B18 15 150 1.0 6.0 126.8 0h38m 1h29m 44 1.6
B19 25 100 0.5 4.0 99.0 2h28m 5h30m 13.1 1.6
B20 25 100 0.7 4.0 99.0 2h28m 5h30m 13.1 1.6
B21 25 100 1.0 4.0 99.0 2h28m 5h30m 13.1 1.6
B22 25 150 0.5 5.0 120.0 1h13m 2h59m 8.0 1.6
B23 25 150 0.7 5.0 120.0 1h13m 2h59m 8.0 1.6
B24 25 150 1.0 5.0 120.0 1h13m 2h59m 8.0 1.6
B25 25 250 0.5 6.0 126.9 0h37m 1h29m 4.5 1.6
B26 25 250 0.7 6.0 126.9 0h37m 1h29m 4.5 1.6
B27 25 250 1.0 6.0 126.9 0h37m 1h29m 4.5 1.6

Table 1: Data set characteristics

Table 3 presents computational results for the instances in class B with under-
staffing. The same computational details as before are presented.

The results for instances in class B follow the same general trend as those for
class A: instances with long tasks are consistently solved to optimality, while this
becomes increasingly difficult when short and medium-length tasks are present. The
main difference, however, is that all instances in class B could be solved to optimality
within the time limit. Branching was never required for obtaining an optimal solution,
thereby confirming the strong LP relaxation of the time-indexed formulation. This is
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Instance LP relaxation ILP formulation
Objective  Time (s) LB UB Gap Time (s) Nodes

A01 3056.0 6 3056.0 3056 0.0% 20 0
A02 2835.0 7 2836.0 2836 0.0% 27 0
A03 2844.0 8 2844.0 2844 0.0% 28 0
A04 1876.9 12 1877.8 1878 0.0% 2009 6315
A05 1776.5 15 1777.6 1778 0.0% 36000 233856
A06 1766.1 18 1766.4 1767 0.0% 36000 1256807
AO07 2349.2 14 2349.2 2350 0.0% 36000 3015872
A08 2009.2 20 2009.2 2010 0.0% 36000 1117328
A09 1969.2 27 1969.2 1970 0.0% 36000 337705
A10 8287.0 60 8287.0 8287 0.0% 257 0
All 8286.0 121 8286.0 8286 0.0% 461 0
Al12 8286.0 186 8286.0 8286 0.0% 504 0
A13 5147.6 274 5147.7 5183 0.7% 36000 1499
Al4 5147.3 303 5147.3 5148 0.0% 36000 4188
Alb 5147.0 339 5147.1 5148 0.0% 36000 1083
Al6 5423.8 1784 5423.8 5425 0.0% 36000 62
A17 5423.8 2425 5423.8 5424 0.0% 22483 0
A18 5423.8 4290 5423.8 5454 0.6% 36000 0
A19 14366.0 226 14366.0 14366 0.0% 752 0
A20 14366.0 530 14366.0 14366 0.0% 1572 0
A21 14366.0 393 14366.0 14366 0.0% 2484 0
A22 8576.0 8750 8576.0 8863 3.2% 36000 0
A23 8576.0 14571 8576.0 8611 0.4% 36000 0
A24 8576.0 3450 8576.0 8576 0.0% 15728 0
A25 9073.8 14761 9073.8 9164 1.0% 36000 0
A26 9013.8 9411 9013.8 - - 36000 0
A27 0.0 36000 0.0 - - 36000 0

Table 2: Computational results for the instances in class A

also reflected in the required calculation time, which is, in general, significantly shorter
compared to the time required for class A.

The influence of caregiver skill level on required calculation time is clearer for the
instances in class B. As demonstrated in Figure 3, the general trend is that higher skill
levels result in increased calculation time due to increased size of the ILP formulation.
Furthermore, this comparison clearly shows the influence of task length on the solver’s
performance. For instances with long tasks, optimal solutions are found in less time
than for instances with medium-length tasks, which in turn are solved faster than
instances with short tasks.

5 Conclusions and future research

The present paper introduced an integer linear programming formulation for scheduling
and assigning home care tasks to skilled caregivers in a multi-period setting. The
proposed model includes controllable processing times and flexible task frequency, two
problem properties which are common in practice but which have never before been
considered by state of the art academic models. Incorporating these generalizations
poses significant challenges in terms of both modeling and solving the problem.

A time-indexed formulation was proposed which incorporates these two novel fea-
tures by modeling them as activity modes and task patterns. Activity modes are used
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Instance LP relaxation ILP formulation
Objective  Time (s) LB UB Gap Time (s) Nodes
BO1 9855.0 13 9855.0 9855 0.0% 35 0
B02 9575.0 15 9575.0 9575 0.0% 41 0
B03 9575.0 25 9575.0 9575 0.0% 57 0
B04 10310.0 23 10310.0 10310 0.0% 100 0
BO5 10210.0 42 10210.0 10210 0.0% 127 0
BO06 10160.0 47 10160.0 10160 0.0% 105 0
BO7 10975.0 31 10975.0 10975 0.0% 90 0
B08 10565.0 42 10565.0 10565 0.0% 125 0
B09 10505.0 54 10505.0 10505 0.0% 151 0
B10 28725.0 145 28725.0 28725 0.0% 592 0
B11 28725.0 264 28725.0 28725 0.0% 1371 0
B12 28725.0 185 28725.0 28725 0.0% 1205 0
B13 30450.0 631 30450.0 30450 0.0% 2705 0
B14 30450.0 742 30450.0 30452 0.0% 1T 0
B15 30450.0 3294 30450.0 30450 0.0% 18772 0
B16 30682.0 1954 30682.0 30682 0.0% 2818 0
B17 30682.0 1249 30682.0 30682 0.0% 4363 0
B18 30682.0 2278 30682.0 30682 0.0% 8133 0
B19 48125.0 4863 48125.0 48125 0.0% 3488 0
B20 48125.0 714 48125.0 48125 0.0% 5400 0
B21 48125.0 954 48125.0 48125 0.0% 13939 0
B22 50655.0 9981 50655.0 50655 0.0% 32522 0
B23 50655.0 4068 50655.0 - - 36000 -
B24 50655.0 20812 50655.0 - - 36000 -
B25 51289.0 36001 51349.0 51409 0.1% 36000 0
B26 51289.0 10553 51289.0 - - 36000
B27 51289.0 21397 - - - 36000 -
Table 3: Computational results for the instances in class B
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Fig. 3: Impact of skill level on calculation time for instances in class B
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to model the different processing times for which a task may be scheduled. This enables
the cost function to be of any form, however, typically, scheduling tasks with a shorter
duration results in increased costs. Task patterns are the second modeling tool included
in the proposed formulation. By selecting a pattern for a task, the days on which it
is scheduled are determined, thereby enabling flexible modeling of task frequency and
spreading throughout the scheduling period.

A series of computational experiments demonstrated that the proposed model could
be solved to optimality for problem instances of realistic size with 25 caregivers and
100 tasks. Further analysis of the results revealed how the formulation’s root node
relaxation is very tight, often resulting in the optimal solution and thus avoiding any
branching to obtain integer solutions. The benchmark data set used in this compu-
tational study has been made publicly available to stimulate further research on this
challenging problem.

The present paper addressed the static, offline version of the problem. However,
in practice, unforeseen events constantly affect the current planning. For example,
caregivers become unavailable, task frequency increases or tasks are canceled. Future
research should turn its attention towards addressing the re-scheduling problem in
home care. This optimization problem imposes an additional restriction concerning
available computation time given how new solutions are typically expected within a
few minutes.
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Optimizing Production Schedule with Energy Consumption and Demand
Charges in Parallel Machine Setting

Farnaz Ghazi Nezami * Mojtaba Heydar * Regina Berretta

Abstract Environmental sustainability concerns, along with the growing need for electricity and
associated costs, make energy-cost reduction an inevitable decision-making criterion in
production scheduling. In this research, we study the problem of production scheduling on non-
identical parallel machines with machine-dependent processing times and known job release
dates to minimize total completion time and energy costs. The energy costs in this study include
demand and consumption charges. We present a mixed-integer nonlinear model to formulate the
problem. The model is then linearized and its performance is tested through numerical
experiments.

1 Introduction

This paper proposes a new energy-aware parallel-machine production scheduling model in
order to minimize total production completion time, energy consumption costs and peak power
charges. The industrial sector uses 266 quadrillions BTU of energy, which accounts for 51% of
total energy consumption in the world!. The breakdown of global energy consumption data
reveals that 22% of the total amount of energy used in the industrial sector is electrical energy
[1]. In the past 50 years, industrial electricity consumption has doubled [2]. In addition, the US
Energy Information Administration (EIA) reports that the price of electricity is expected to

! https://www.eia.gov/tools/fags/faq.cfim?id=447 &t=1
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increase by 18% by 20402 Currently, the cost of electricity for manufacturing in the United
States exceeds 100 billion dollars [2], and this number will continue to increase the in future.

The surge in energy prices, along with the scarcity of natural sources, the growth of public
awareness of environmental concerns, and the establishment of sustainability-based standards
magnify the necessity of incorporating energy consumption and associated costs into planning
and scheduling decisions at manufacturing facilities. The increase in energy demand causes
difficulty for electrical energy providers, who must keep up with demand, which is particularly
difficult during peak-demand periods. Time-of-Use (TOU) tariffs implemented by utility
companies aim to shift demand from the expensive peak periods to less-expensive non-peak
hours in order to flatten the load curve and decrease the deficit risks in supply.

In general, electricity charges can be categorized into two types: consumption charges and
demand charges. Consumption charges are calculated according to the total amount of electrical
energy consumed by a company during a given period, based on kilowatt-hour, and may vary
throughout the day to motivate a shift of consumption away from peak hours. Demand charges
try to address the overhead expenses that utility companies bear to provide the service. This
charge is based on the highest level of power demanded over a given period of time during the
billing period and is usually calculated as the highest “average fifteen-minute demand” for a
month. Energy demand is measured in kilowatts (kW) and often represents a significant
percentage of charges on utility bills for the industrial user.

Most of the existing research on energy-aware job scheduling does not differentiate
between these two types of energy costs. In addition, in the majority of energy-aware job
scheduling studies, the impact of various machine operating modes on decision making output
is not considered. In a typical manufacturing system, the machines may be running idle for a
significant amount of time waiting for the next job to arrive and be processed. One study showed
that in a machining process, 85% of total energy consumption is used when the machine is idling,
and only 15% is applied to the actual machining process [3]. The idle energy is used to run the
auxiliary components. Therefore, it is critical to study the impact of various operating states on
the production schedule, energy requirements, and cost planning. In the past few years, the
number of studies investigating the energy-aware production scheduling has increased
significantly. A literature survey of studies on energy efficiency in manufacturing companies is
provided by [4]. This survey presents a breakdown of studies based on energy coverage
(production system, internal and external conversion system), energy supply, energy demand
(processing and non-processing energy demand), objective criteria (monetary, non-monetary),
the system of objectives (multi/single objectives), the manufacturing model (single machine,
parallel machines, flow shop, job shop/project scheduling, or hoist scheduling), the model type
(linear, mixed integer linear, mixed integer quadratic constrained, mixed integer non-linear
programing, queuing theory and simulation, and other analytical models such as Markov
decision model), and solution approach (heuristic, exact, standard solver). To integrate energy
concerns into classic scheduling problems, [5] investigated a single machine problem to
minimize total energy consumption and maximum tardiness, with the possibility of machine
shut-down between consecutive jobs following the break-even period. They considered only
processing and idle energy consumption in their model. A bi-objective optimization problem to
minimize weighted tardiness and non-process (idle and switch) energy consumption in a job-
shop setting is proposed in [6]. Their model also allows for switching off a machine if the idle
time is long enough, considering a breakeven time, and they solved the problem using Genetic
Algorithm (GA). In another study, a job-shop scheduling problem with machine speed scaling
to minimize makespan and energy consumption using GA was proposed by [7]. A job-shop
problem with energy threshold and makespan minimization was investigated by [8] using a
mixed integer linear model. They considered extra energy consumption at the beginning of the
operation, and energy consumption was divided into “peak™ and “processing” categories. An
energy-aware scheduling model with tool selection and operation sequencing was introduced by
[9]. Their bi-objective model minimized total energy consumption (idle, setup, and process

2 http://www.eia.gov/forecasts/aeo/pdf/0383(2015).pdf

-134 -



8th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2017)
5-8 December 2017, Kuala Lumpur, Malaysia

energy) and makespan in a flexible job-shop system. To incorporate TOU policy on energy
aware scheduling, [10] minimized total electricity cost and number of machines based on TOU
pricing in a uniform parallel-machine problem. In another study, [11] performed a job-machine
assignment and scheduling in an unrelated parallel machine setting in order to minimize total
energy costs according to TOU policy. In 2016, [12] minimized total energy consumption using
TOU via job scheduling for a single machine problem.

In the existing research studies on energy-aware scheduling problem, the concurrent
integration of operating mode-based energy consumption, TOU policies, and peak power
demand is not well investigated in a parallel machine environment. The main contribution of
this paper is to propose a new comprehensive framework to minimize total completion time, as
well as time-dependent energy consumption and peak power charges simultaneously in a non-
homogenous parallel-machine manufacturing system.

The remainder of this paper is organized as follows: Section 2 introduces the underlying
assumptions of the model and presents the mathematical model. An illustration of the problem
is presented via a case study in Section 3. Section 4 presents our numerical experiments as well
as the results. Our conclusions are discussed in Section 5.

2 Problem Definition and Mathematical Modeling

This section describes the mathematical formulation proposed for a parallel machine
scheduling problem where the total completion time of jobs, energy consumption, and power
demand charges are minimized through determining the optimum sequence of jobs, job-machine
assignment, and machine operating schedule. The proposed mixed-integer nonlinear
programming (MINLP) model is built on the following underlying assumptions:

e Job processing times are known and the processing is non-preemptive.

e The machines are not identical, i.e., each machine has its own energy profile, and job
processing times are machine-dependent. In other words, the processing time of a given
jobs might vary on different machines.

e Machine energy consumption varies during different modes (states).

e Only one job can be processed on a given machine in each period.

e Ifthere is no job to process on a machine in any given period, the machine will be idle
and consuming idle energy. Idle mode is a very low-energy consuming mode.

e At the beginning of the scheduling horizon, the machines are off and might be turned
on in an anticipation of an arriving job. The first job might arrive at the current period,
or any other upcoming periods.

e The time to turn on the machines is assumed to be insignificant; therefore, it does not
impact energy consumption significantly. However, the average power demand during
the period at which the machine is turned on increases and is represented by OP. Note
that OP is the average energy demand in the period at which the machine is turned on,
accounting for power surge during the turn-on (start) process.

e  When a machine switches to processing mode from idle, there will be a spike in power
draw, called switch power (SP). The time to switch is assumed to be insignificant. As
a result, when a switch to processing mode occurs in a given period, there will be an
excess power demand during that period.

e  The unit price of energy varies during peak/off-peak periods (TOU tariff). Demand
charge is also a function of TOU and varies in different periods.

e The planning horizon is broken into T periods, such that the length of each period is the
same as the interval used in energy demand charge calculations.

The parameters considered in the MINLP are as follows:

Pijm Processing time of job je J on machine m e M
IP; Power consumption of machine me M in idle mode during period te T
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Power consumption of machine me M in processing mode during period te T

Power consumption of machine m € M during turn-on process in period te T

Power consumption of machine m e M during switch process from idle to
processing mode in period te T

Cost of maximum power demand

Cost of energy consumption during period te T

Duration of each period

Objective function i, i=1,2,3

The decision variables considered in the MINLP are as follows:

Pmax
X}m
Wt
jm
Z,
Ya
Un

Maximum power demand

1 if job j e J processing started on machine me M at period te T; zero otherwise
1 if job je J is being processed on machine me M at period te T; zero otherwise
1 if machine me M is turned on from off mode at period te T; zero otherwise

1 if machine me M is idle at period te T; zero otherwise

1 if machine me M is switched from idle mode to processing mode at period te T;
zero otherwise

The following is the proposed mixed-integer nonlinear programming model:

Min Y3 3 (t+P, —1)X}, (1)
jeJ teT meM
Min ZLxCEt[ZIPn‘]+ S PP! zwj‘mJ @)
teT meM meM jed
Min CPxP, 3)
Subject to
TP+l
> > X, =1 Vjel “4)
meM t=1
%x}msl vmeM,vteT %)
YW, <1 VmeM,vteT (6)
jed
. t+Pj, 1 0 .
PnXjn € 2 Wi Vied,ymeM, vte fL,..T=p, +1} (7)
t
Wi =Y X% Vjeld,vmeM,vtedl,.. P, ~1} (8)
6=1
t
W= ¥Xf, Viel,vmeM,vte{P,,...T| ©)
=t—P}+
Yz <1 VmeM (10)
teT
t
YXL -2Z0<0 VmeM,vteT (11)
jed =1
t
§zg+(l—j§w;mjs1+¥r; YmeM,vteT (12)
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1-YW,, 2Y, vYmeM,vteT (13)
jed

t

>Z0>Y! YmeM,vteT (14)
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Yi-vi<ul vmeM,vtefl,..., T -1} (15)
Z,+U, <1 VmeM,VteT (16)
SIRLY! + S PR S WL + 3 (OR: — PRzt + 3(sP! - PRI
meM meM jed meM meM

Ly (PPr;—|Pr;)z;ﬂ(1—2x;szpmax VteT
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(17)

In the proposed multi-objective model, the objective function (1) aims to minimize the total
completion time. The second and third objective functions aim to minimize the cost of time-
based energy consumption and maximum power demand, respectively.

Constraint set (4) — (9) are the job scheduling-based constraints: constraints (4) and (5)
show that in a given period only one job can be “started” on each machine. Based on constraint
(6), each machine can “process” at most one job in a given period. In other words, based on
these constraints, there is a one-to-one assignment between job and machine. Note that a job can
be processed after it is started, and based on constraint (7), the total number of processing periods
for a job is determined by the job processing time. Constraints (8) and (9) show that the job
processing is non-preemptive once started [13].

Constraint set (10) — (17) are machine-based constraints and address machine operation
and energy planning: constraint (10) indicates that each machine is turned on (from the off mode)
at most once during the planning horizon. Constraint (11) indicates that if a job processing is
started on a machine in a given period, the machine might have been turned on either during that
period or in any other prior periods. It is worth mentioning that for energy demand reduction
purposes, a machine might be turned on in a period when there is no job to be processed. This
strategy is helpful to flatten the overall peak power demand in parallel machine setting.
Constraints (12) and (13) show that if a machine is on, with no job to process, it is in idle mode.
According to constraint (14), a machine can be idle if it has been turned on in any of the previous
periods. Constraint (15) explains the switch process from idle to processing mode between
periods. Constraint (16) indicates that in a given period, either a switch or turn-on process occurs.
Constraint (17) is the power demand capacity constraint and accounts for the power demand
during processing and idle modes, and spikes during turn-on and switch process. There is an
upper bound on total amount of power consumption to prevent supply shortage and over
charging. The last term on the left hand side of constraint (17) is nonlinear, which leads to a
nonlinear constraint. This equation can be linearized using the following set of constraints:

S IPYL+ Y PPLYW,, + ¥ (0P, PPzt + 3 (sP, — PR

meM meM jed meM meM
+ Y (PPi-IP st <P, VteT
meM
such that
SL<Z:
5;31—zx;m (18)
jed
Sp=2Zy— 2 Xin

jed
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3 Model Validation: Illustrative Case Study

This section presents an eight-job three-machine scheduling example with a planning
horizon of 16 periods (Table 1) to illustrate the model performance. The unit price of energy
($/kWh) fluctuates in different periods and is given as follows {0.04, 0.04, 0.2, 0.04, 0.04, 0.2,
0.04,0.2,0.2,0.2,0.2,0.04, 0.2, 0.04, 0.2, 0.2}. The duration of each period is assumed to be L
= 0.5 hour. The machines are not identical, i.e., they have different power consumption amounts,
and the job processing times vary on different machines. Since the machines have different
capabilities, the job processing times can be different even though the processing power
consumptions are the same. Table 1 shows the machines’ power specifications and machine-
based job durations. The IP, PP, OP, SP are power consumption in kW, and job processing times
are given in periods. The model is solved using a weighted approach [15], as described in the
next section, where, W; represents the weight of each objective function.

Table 1 Illustrative case study data
IP PP OoP SP J1 J2 J3 J4 JS Jo J7 J8
M1 0.8 4 8 4.8 3 1 3 4 2 5 2 2
M2 0.8 4 8 4.8 5 5 1 4 3 3 1 2
M3 1 5 15 6 5 3 2 4 3 4 5 2

£

Figure 1 shows the solution output for the given example when the objectives are equally
weighted. As shown, only M1 and M2 are selected, as they are the lowest-energy consuming
machines. M1 is turned on in the first period to process J2 and then switches to an idle mode in
period 2 at which M2 is turned on. M1 switches to an idle mode in period 2, considering the
spike resulting from M2 during the turn-on process, assisting in reducing peak power demand
and the associated charges. The equally weighted multi-objective model tries to avoid concurrent
turn-on processes, as it has a significant impact on peak demand.

The model yields Pma=8.8 kW, total completion time=41 periods (half-hour), and total
energy consumption charges of $5.04/kWh. It should be noted that in industrial facilities, the
unit price of power demand ($/kW) is significantly higher than unit energy consumption charges
($/kWh), and minimizing peak demand leads to considerable savings for companies. High power
demand can also influence future contracts with utility providers, as sometimes they use the
previous year peak-power demand data as a default for the power demand during the subsequent
year. In this example, a weighted sum approach was used to solve the multiple-objective model.
Without loss of generality, we assume that all three objectives are equally important, meaning
that all have the same weight in a weighted-sum approach.

In order to illustrate the effect of energy-related objectives (i.e. objectives two and three),
we analyzed the model considering only the first objective. The result is shown in Figure 2. In
this case, all machines are turned on in the first period, making the completion time as small as
its minimum value (=26 periods). The peak power is at its maximum, i.e., 31 kW, in the first
period, which increases power demand charges significantly.

Periods
1 P2l 3T 4T s Tel 7T 8T olTolunlnlnlialistie

Ml | 2 O
M2 A EEEE S
M3

Peak
load

8 |8.8|8.8| 8 | 8 | 8 | 8 | 8 |4.5|4.8|4.8|1.6|1.6|1.6|1.6|1.6

Turn-on Idle Switch to processing

Figure 1. Solution of illustrative case when all objectives are considered (W;=w,=ws)
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Periods
1 23T g T s el 7T 8T ol olnlTnlliglistie
vt [ 2] s o on
N EA S G
M3 |18 18| 4 4 14

J4|

Turn-on Idle Switch to processing

Figure 2. Solution of illustrative case when only completion time is minimized (w;=1)

In the next scenario, we considered only the energy consumption charges objective
function (second objective). The optimal value of the second objective is $3.52. In this case, the
values of the other two objectives would be deteriorated. In this schedule, as shown in Figure 3,
the total completion time is 52 periods (1 period = 30 minutes) and Pma=16 kW, which are
higher in comparison with the equally weighted scenario. In this case, only two machines are
utilized.

Periods

112131415161 71819 110]11]12]13114115716
Mt | 18 [ 18 N E ITETIET
M2 J7 J3 J4 J4 J4 J4 J6 J6 J6
M3 [ 1 1 [ 1 1 1
Turn-on Idle Switch to processing

Figure 3. Solution of illustrative case when energy cost (objective 2) is minimized (W,=1)

Finally, the model is studied considering only the third objective. In this case, the optimal
value of the objective function is 88 (Pmax = 8.8 kW), and the total completion time is 74 periods
(Figure 4). Here only two machines are utilized, and the turn-on action and switches between
modes occur at different periods in order to minimize power demand. It should be noted that in
this schedule, M2 is turned on in period 2 but it is kept idle until period 6.

Periods

1 P23 T a T sl 7T 8T olTolnunlnlnlialistie
M1 | 12 B S T
M2 J4 34 14 34 B 6 36 I6
M3 [ [ 1 [ 1 1 [
Turn-on Idle Switch to processing
Figure 4. Solution of illustrative case when Ppay is minimized (w;=1)
4 Experimental Setup, Results, and Discussion

To show the effectiveness of the proposed mathematical model, we perform a numerical
study in this section. For this purpose, instances were generated based on the parameters given
in Table 2. To solve the generated instances, the mixed-integer linear program was implemented
using C++, and the MILP solver of IBM ILOG CPLEX 12.5% was called to solve the instances
on a desktop computer running Windows 64-bit operating system, an Intel 17-4790 CPU with
eight 3.60 GHz cores, and 16 GB RAM.

3 https://www.ibm.com/bs-en/marketplace/ibm-ilog-cplex
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For the numerical study, five categories of instances were presented based on the number
of machines (2 to 6 machines). Then, in each category, four random instances were generated
based on the number of jobs, where the job durations and machines power consumption were
generated using Table 2. The instances are solved in two ways. Firstly, each instance is solved
with one objective at a time, and the optimal values of the objective functions along with the run
times are reported in Table 3. The optimal values reported in Table 3 are used to find a
compromise solution. From this numerical experiment, it can be seen that the run time is
increasing from objective one to objective three, when the problem is solved with one objective
at a time. This can be justified by the fact that the parallel machine with completion time can be
solved to optimality in a polynomial time [14], while the Pnax is a min-max objective function
that increases the problem complexity.

Table 2. Parameters used to generate instances for the numerical study

Parameters Possible Values

PP {3,4,5,6,7,8,9}

IP [0.2, 0.5]xPP

OP [2, 3]xPP

SP [1.2,2] xPP

CE Pr(CE=0.04)=Pr(CE=0.2)=0.5
L 0.5 hour

CP 10

Pim [1, 5] all integers

M {2,3,4,5, 6}

J If M=2 or 3, then M + {1, 2, 3, 4}

If M=4 or 5, then M + {7, 8, 9, 10}
If M= 6, then M + {13, 14, 15,16}
T 16 =8 hr

Table 3. Results for the first set of experiments

Instance CPLEX Output
# M J Completion CPU time 2" obj. (Energy =~ CPU time 3 Obj. CPU time
time (sec) cost) (sec) Prax (sec)
1 2 3 9 0 1.64 0 120 0
2 4 11 0 1.33 0 80 0
3 5 17 0 2.3 0 100 0
4 6 24 0 2.18 0 60 0
5 3 4 11 0 1.43 0 60 0
6 5 11 0 2.34 0 90 0
7 6 14 0 222 0 90 1
8 7 15 0 1.9 0 210 0
9 4 11 29 1 2.58 1 100 1
10 12 40 1 5.28 1 88 10
11 13 32 1 4.24 2 142 593
12 14 39 1 4.48 1 180 7
13 5 12 23 1 4.14 2 132 8
14 13 28 1 2.42 1 110 13
15 14 37 1 7.54 3 100 41
16 15 37 1 4.28 2 142 9,415
17 6 19 49 3 9.78 4 180 16
18 20 51 3 3.58 4 120 38
19 21 55 3 3.1 3 106 180
20 22 56 3 6.16 4 180 11
Average 1 1.5 516.7

In the second approach, the tri-objective model is solved, where the problem is converted
to a single-objective using the compromised programming approach [15] to find the Pareto
fronts. In this problem, the single objective is defined as follows:
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)
W, x (19)

In Eq. (19), F® is the single objective, F', i =1, 2, 3 is the optimal value of objective i, and
wi, i =1, 2, 3 is the weight of objective i, where Zf:1Wi =1and 0 <w; < 1. In this numerical study

we set (W; = W, = Ww3) and the results are given in Table 4.

Table 4. Results of the compromise approach (wW; =W, = w;)

Instance CPLEX Output
# M J Obj 1 Obj 2 Obj 3 CPU time (sec)
1 2 3 19 3.17 120 0
2 4 14 2.23 98 0
3 5 30 32 100 0
4 6 41 2.88 60 0
5 3 4 21 22 100 1
6 5 28 3.07 90 0
7 6 24 3.06 96 1
8 7 26 4.62 250 0
9 4 11 56 4.29 110 2
10 12 64 6.8 118 37
11 13 58 5.56 190 63
12 14 84 8.76 240 104
13 5 12 54 9.05 202 120
14 13 85 6.54 110 200
15 14 82 9.58 130 160
16 15 84 6.46 190 162
17 6 19 92 12.01 270 150
18 20 117 6.62 170 41
19 21 118 4.81 180 116
20 22 119 10.92 240 212
Average 68.45

The comparison of results in Tables 3 and 4 reveals how the trade-offs among these three
objectives can be made (Figure 5) and how the required time to achieve this can be affected.
Moreover, by giving different weights to each objective by a decision maker, a set of solutions
can be obtained. Then, the decision-maker decides which solution is more convenient depending
on the circumstances and company policies. In addition, as shown in Tables 3 and 4, the solution
time for the problems of this size, which are meaningful in practice, is negligible. This shows
the effectiveness and applicability of the proposed model. However, as the dimension of the
problem expands (larger number of machines, periods, and jobs), a more effective approach such
as metaheuristics methods like NSGA-II is required to solve the problems in a more time-
efficient manner.

A more detailed trade-off between objectives one and three is studied and depicted in
Figure 5. In this set of experiment, instance 14 is considered as an example to be analyzed. Then,
each objective one and three is given different combination of weights from a set of weights
given by (Wi, ws) = {(0.8, 0.1), (0.7, 0.2), (0.6, 0.3), (0.5, 0.4), (0.4, 0.5), (0.3, 0.6), (0.2, 0.7),
(0.1, 0.8)} while w; is fixed at 0.1. The results in Figure 5 reveals the conflicts between these
two objectives and shows how improving one will deteriorate the other.

5 Conclusion
In this paper, a mixed-integer nonlinear programming model is presented for a non-

identical parallel machine scheduling problem with three objectives: total completion time, total
energy cost, and maximum power demand charges to be minimized. This is the first study that

-141 -



8th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2017)
5-8 December 2017, Kuala Lumpur, Malaysia

considers maximum power demand in each period as a decision variable where energy
consumption is a function of operating modes, and energy costs are following TOU policy. Then,
in order to find Pareto fronts, the compromise approach is used to help the decision-maker and
production-scheduler to apply the best schedule. The proposed algorithm handles the practical
size cases efficiently.

Different directions can be employed for future work. First, multi-objective techniques can

be utilized to obtain a set of Pareto optimal solutions. Second, the model can be extended to
other machine configurations. Third, the model can be modified to address some other
scheduling objectives, such as makespan or tardiness minimization. Finally, a heuristic approach
can be proposed to solve the large-scale problems in a more time-efficient manner.

S00

GO0

n
]

Objective three: P,
&
=

o0

as 55 bt a5 15 135 155

Objective One: Total completion time

Figure 5. Values of objective one (total completion time) and objective three (Pmax) of instance 14 where w, = 0.1, (W,

ws) = {(0.8, 0.1), (0.7, 0.2), (0.6, 0.3), (0.5, 0.4), (0.4, 0.5), (0.3, 0.6), (0.2, 0.7), (0.1, 0.8)}, and W, + w3 = 0.9
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Evolutionary Bilevel Approach for Integrated Long-Term Staffing and
Scheduling

Julian Schulte « Maik Giinther ¢ Volker Nissen

Abstract Determining size and structure of a company’s workforce is one of the most
challenging tasks in human resource planning, especially when considering a long-term
planning horizon with varying demand. In this paper an approach for integrated staffing and
scheduling in a strategic long-term context is presented by applying evolutionary bilevel
optimization. For demonstration, the example of determining the number of employees in
different categories over the period of one year in a midsized call center of a utility is used. In
doing so, two contrary objectives were optimized simultaneously: reduce the overall workforce
costs and retain a high scheduling quality. The results show that the proposed approach could
be used to support corporate decision making related to strategic workforce planning, not only
for call centers but for any other kind of workforce planning involving personnel scheduling.

1 Introduction and Related Work

Companies are challenged by the question of how to organize size and structure of their
workforce in order to manage upcoming workload most cost-effectively. This is especially the
case when entirely new business units are established, existing units are restructured or current
and future demand strongly deviate from each other. Examples of a changing workload are
found, among others, in the utility sector. Rising requirements for customer service combined
with strong cost pressure require measures for utilities to create a cost-efficient workforce
structure. Therefore, in this paper the problem of determining the ideal size and structure of a
typical inbound call center of an utility is examined. However, it may be noted that the
methodology applied in this paper is not limited to the considered call center, but rather can be
applied to problems of other companies and business units.
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When considering size and structure (e.g. skill-mix and contract types) of a company’s
workforce, the purpose of staffing is to determine the adequate future number of employees
needed in different categories. As this is already not an easy task with only one type of
employee, it gets even more challenging when looking at a heterogeneous workforce due to
different types of skills or contracts [7]. Scheduling, as another crucial task in workforce
planning, is concerned with getting the right people to the right place at the right time. It is
easily recognizable that staffing decisions have direct impact on scheduling quality. Hence, it
is reasonable not to look at staffing and scheduling decisions as two consecutive tasks but to
employ an integrated planning approach.

In the literature, the number of contributions addressing integrated staffing and
scheduling is rather limited, especially compared to literature concentrated on staffing or
scheduling problems [7, 16, 25]. There are, however, several approaches differing in
methodology and considered planning horizon. Avramidis et al. [2] for example provide a
simulation-based algorithm that simultaneously optimizes the staffing and scheduling over one
day in a multi-skill call center. They focus on how many agents of each type are needed based
on the arrival rates and type of calls at a given day. In the model presented by Brunner and
Edenharter [8] a column generation based heuristic is applied to identify the weekly demand of
physicians with different experience levels. Even though the authors are targeting a long-term
planning horizon of one year, they solve each week independently. Belién and
Demeulemeester [3] propose a branch-and-price approach considering a planning horizon of
four weeks with the aim of reducing staffing costs by integrating both processes, operation
room scheduling, which determines the required nurse staffing level, and nurse scheduling. A
branch-and-price methodology with a planning horizon of four weeks was also used in the
integrated model developed by Maenhout and Vanhoucke [16], with the purpose of identifying
optimal staffing and scheduling policies in a hospital. In a more recent contribution published
by Belién et al. [4], an enumerative MILP algorithm is proposed for optimizing the team sizes
of an aircraft maintenance company in order to minimize the overall labor costs for a period of
six weeks.

The proposed methods already deliver detailed insight into the needed workforce at a
given day, week or month and therefore a necessary basis for further workforce planning.
However, the planning horizons considered are short when a strategic perspective is taken.
Thus, the approaches so far cannot provide information about the required overall workforce,
especially when considering a long-term period, e.g. one year, with varying demand as well as
factors like overtime/flextime and holidays of employees. To fill this gap, in this paper an
approach for integrated staffing and scheduling in a strategic long-term context using
evolutionary bilevel optimization is presented.

Bilevel optimization can be seen as a form of hierarchical optimization problem. More
specifically, an upper-level optimization problem has another optimization problem within its
constraints and therefore is dependent on the results of the lower-level problem. This
hierarchical relationship is closely related to the problem of Stackelberg [22], where a follower
(lower-level problem) optimizes his objective based on the given parameters determined by the
leader (upper-level problem). The leader, on the other hand, optimizes his own objective under
consideration of the follower’s possible reactions [10]. In the case of integrated staffing and
scheduling, staffing will be treated as upper-level problem with the objective to minimize the
overall labor costs, i.e. adjusting number and qualification of employees, but at the same time
maximizing the quality of personnel schedules. Scheduling, as the lower-level optimization
problem, has the objective to maximize scheduling quality based on the staffing decisions
made at the upper-level. The quality in this case is assessed by a fitness function that considers
the match of staffing demand and allocation of employees with certain skills at given time
intervals as well as employee overtime.

Evolutionary bilevel optimization was successfully applied in various practical
applications in fields such as economics, transportation, engineering and management, but, to
the best of our knowledge, not yet in workforce planning and scheduling problems (see [20]
for a comprehensive review). Evolutionary Algorithms (EA) are a common metaheuristic
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approach to compute good solutions in an acceptable amount of time, especially when working
with real world problems that otherwise cannot be solved to optimality within reasonable
computation time [17]. This also applies to workforce planning and scheduling problems, with
Genetic Algorithms (GA) as the most often used class of metaheuristics in this domain [7, 25].
Due to its widespread usage and successful application to similar problems, GA were chosen
in our case, both to solve the upper-level staffing and the lower-level scheduling problem.

The remainder of the paper is structured as follows: In Section 2 the problem of
integrated staffing and scheduling is presented. Section 3 describes the applied evolutionary
bilevel approach. In Section 4 the computational results will be discussed. Finally, the
conclusions and suggestions for further research are presented in Section 5.

2 Problem Description

In this section, the problem of integrated staffing and scheduling in the environment of a
German utility is presented. We consider a strategic context in which the company has to make
its overall workforce planning one year in advance to assure that all required employees with
the right qualification are available. Due to internal restrictions of the utility, the presented
problem is derived and abstracted from a real world problem commonly found in strategic
workforce planning.

2.1 Bilevel Optimization

Bilevel optimization problems are proven to be strongly NP-hard [14] and can generally be
formulated as follows [10, 20, 24]:

min F(x,y)
xX€EX
subject to Glx,y) <0
. (D
min f(x,)
subject to gle,y) <0

where x is the vector of decision variables determined by the upper-level problem and y is the
vector determined by the lower-level problem. Besides, F(x,y) and f(x,y) are the objective
functions and G(x,y) and g(x,y) the constraints of the upper- and lower-level problem. For
each vectorx, y will be the optimization result of the lower-level problem min f(x,y).
Therefore, min f(x,y) could also be denoted as y(x) [27]. Thus, the result of the upper-level
problem is dependent on the result of the lower-level problem, which in turn is dependent on
the vector x given by the upper-level problem.

For the considered problem of integrated staffing and scheduling, x will be the staffing
decision made at the upper-level determining the number of employees of each type
(combination of skill set and contract type). Based on the given workforce structure, the
personnel scheduling will be conducted yielding schedules for each day of the planning
horizon. Hence, the objective function at the upper-level min F (x, y) depends on the costs due
to staffing decisions as well as the quality y(x) of the created schedules at the lower level.

2.2 Staffing Problem

The here considered call center has a need of three different skill types s € S with S =
{agent, support, supervisor}. The skills are considered to be categorical, which means they
determine the tasks that can be performed by each employee. However, it is possible to cross-
train employees so they can perform more than one type of task [7]. The qualification of an
employee can therefore be seen as set of different skill combinations g € S. The contract type
t € T of an employee determines his average weekly working time.
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Within its staffing decision, the company has to predefine feasible employee types E (see
Table 1). Each employee type &, € E is defined by its qualification q and contract type t.
Furthermore, each employee type &, is linked to costs cgq¢ that arise for employing one
employee of this type over the considered planning horizon. Here, the costs of each employee
type are represented by a relative factor summing up annual wages, payroll taxes, overhead
and training costs. The number of employees of each type is represented by the decision
variable xg4;. The setting of the staffing problem is shown in Table 1.

The objective here is, as part of the upper-level problem, to minimize the overall staffing
costs (2a) subject to the output of the lower-level problem (2b).

Table 1 Setting of the staffing problem

Contract type Qualification Costs
40 h agent 1
20h agent 0.6
40 h support 1.1
20 h support 0.65
40 h agent - support 1.3
20 h agent - support 0.75
40 h supervisor 1.4

Parameters (staffing)

S set of skills (index s)

q qualification of an employee (q € S)

T set of contract types (index t)

E set of employee types (index &;.)

Ceqt costs for an employee of type &,

Decision variable (staffing)

Xeqt number of employees of type &,

Staffing problem (upper level)

min F{ " Xeqe Caqe, y00) (22)
e‘ntFT

with

Xsqr = 0 and integer Véy, €E

qESteT

subject to

(3a) - (31) (2b)
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2.3 Scheduling Problem

The scheduling problem presented in this paper considers the daily staff scheduling of a call
center over a planning horizon of one year. Each week of the planning horizon w € W is
partitioned into periods p € P, representing the operating days of the call center. Moreover,
each operating day again is segmented into time intervals i € I. In this practical case, a
planning horizon W = {1, ..., 52} with operating days P = {1,...,5} and, due to the strategic
context, hourly planning intervals [ = {8,...,17} were chosen, representing the operating
times 8 a.m. to 6 p.m.

The set of employees E is determined by the staffing decision at the upper-level with a
concrete employee for each xgq¢. It is assumed that the company has a predefined set of
possible shift patterns M (see Table 2) with b,,; determining whether a shift pattern is covering
a specific time interval. In addition, variable n,; determines if an employee’s qualification
contains skill s. It is assumed that each employee has six weeks of holidays each year.
Therefore it is possible for employees not to be available at certain periods which is
determined by variable ay,,.

Table 2 Possible shift patterns

Shift start (a.m.) 8 8 8 10 10 10 12
Shift duration (h) 4 8 10 4 6 8 4

The assignment of an employee e € E to a shift m on day p in week w with skill s is
controlled by using the binary decision variable y,7,,,. An employee can only be assigned if he
is available and has the required skill (3b) - (3c). Furthermore, one employee can only be
assigned to one shift each day (3d).

For each time interval i on day p in week w and each skill s a certain staffing level d;,,
has to be satisfied. The number of planned employees of each skill at time interval i is
determined by variable e;,,, (3e). If a deviation |ej,,, — dj,, | arises from the staffing target,
penalty points are generated by the function P; (3f). An additional penalty is added if no
employees are planned but required or vice versa.

To compensate overtime and minus hours, each employee has a flextime account u,,,,
which is updated on a weekly basis. Therefore, the deviation of the employee’s actual working
time l,,, (3g) and the average weekly working time h, is added to his flextime account (3h).
However, to provide an equal workload distribution and to ensure that employees are staffed
according to their contract types, the penalty function P, generates penalty points based on
how far employees exceeded or fall below their average weekly working time u,,,/h, (3i).
The weekly penalty is calculated by multiplying the absolute flextime value times the
percentage of deviation.

It has to be noted that both penalty functions have to be carefully balanced, as otherwise
employees might fall far beyond their contractual working hours (if over-/understaffing is too
expensive) or, on the other side, flextime will not be used at all.

The objective here is to minimize the overall penalty points over the considered planning
horizon (3a) subject to given constraints (3b) — (31) described above.

Parameters (scheduling)

w set of weeks in planning horizon (index w)
P set of periods in planning week w (index p)
I set of time intervals in planning period p (index i)
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E set of employees (index e) determined by the upper-level
decision variable xg4;

S set of skills (index s)

M set of shift patterns (index m)

b 1 if shift m covering time interval i, 0 otherwise

Nes 1 if employee’s qualification contains skill s, 0 otherwise

Apw 1 if employee e is available on day p in week w, 0 otherwise

ipw demand of skill s at time interval i on day p in week w

€ipw number of planned employees with skill s at time interval i on day p in
week w

P, demand penalty function

Uey flextime account of employee e in week w

low actual working time employee e in week w

he average weekly working time of employee e

P, working time penalty function

Binary decision variable (scheduling)

Yimpw 1 if employee e is assigned to a shift m on day p in week w with
skill s, 0 otherwise

Scheduling problem (lower level)

myin Py + P, (3a)

with
Nes, bmi: a;w: yrilspw € {0’ 1}

VeeE,seSmeMpePwelW

subject to

Yipw < Qpw VeEeEESESmEMpEP,wWwEW (3b)

Vipw < Nes Ve €EE,sESmMEMpeEP,weW (3¢)

ZZyﬁprS 1 Ve€EpeP,weW (3d)

SES MEM

efpw=2yﬁfpwbmi VseSmeEM,iel,peP,weW (3e)
e€EE

Pa = Z ZZ Z Z |dipw — €iw| * va,  with

SESe€EIi€EIpeEPWEW

500,  ef,, > 0andds,, =0 (3H
Ya = 4500, dipw > 0and e, =0
1, otherwise
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lewzzzy;fpwbmi VeEEmeMweW Ge)
i€l peP
Uew = Uew-1) T (lew = hew)s with ug =0
(3h)

vVvseSmeM,iel,peP,welW

p=zzuh—wz (3i)

eeE WEW

3 Evolutionary Bilevel Approach

3.1 Genetic Algorithms

GA are population-based metaheuristics and rely on three basic principles. First, there is a set
of solutions (population). Each solution (individual) is evaluated based on its quality (fitness)
by applying an objective function (fitness function). Second, variation operators are applied in
the process of creating new solutions (reproduction). This can be done by crossover
(recombining two or more individuals) and/or mutation (random variation of an individual).
Both variation operators are probabilistically applied and exist in many different variants.
Finally, individuals with high fitness values are more likely to be selected for reproduction by
a selection procedure (see [18, 19, 23] for more detailed information on metaheuristic
optimization in general and GA in particular). The GA applied in this paper are based on the
basic version shown in Algorithm 1.

The individuals of the here applied GA are represented by matrices, with each row
corresponding to an abstract employee type (upper-level algorithm) respectively a concrete
employee (lower-level algorithm). The rows at the upper-level are encoded as 4-bit Gray
strings, allowing a number between 0 and 15 employees for each type. At the lower-level, 3-bit
Gray encoding is used to determine one of seven possible shift patterns for an employee’s
working day or absence of the employee.

For reproduction, one-point, uniform and two types of n-point crossover are used, each
with a probability p=0.25. The first type of n-point crossover randomly selects half of the rows
of each matrix and interchanges the entire rows between the two individuals. The second type
interchanges one n-bit block of random size per row between the individuals. Moreover, bit
flip mutation is used with each bit flipping with the probability of the given mutation rate (see
Section 4.1).

3.2 Multi-Objective Optimization

Within the here discussed problem of integrated staffing and scheduling, two objectives have
to be optimized. However, both objectives are in conflict with each other, as for example
hiring multi-skilled, flexible part-time employees will yield high quality schedules but also
increase the staffing costs and on the other hand, reducing the number of employees will
reduce labor costs but also the scheduling quality. The resulting multi-objective problem can
be solved by using the concept of Pareto efficiency, which will yield a set of Pareto optimal
solutions (Pareto front). The final solution to be selected will therefore be a trade-off among
the two considered objectives staffing costs and scheduling quality (see [9, 6, 19] for more
detailed information on multi-objective optimization).
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Algorithm 1 Overview of GA in pseudocode

1: popsize « desired population size

2: generations < number of generations to be evaluated

3: P « build initial population of random individuals with size popsize
4: Best « select best individual according to fitness of initial population
5: for generations times do

6 for each individual P; € P do

7: if Fitness(P;) > Fitness(Best)
8: Best « P,

9: end if

10: end for

11: P «{}

12: for popsize times do

13: Parent P, « SelectIndividual (P)
14: Parent P, « Selectindividual (P)
15: Child C « Crossover(P,, P,)

16: P' « P' U {Mutate(C)}

17: end for

18: p=p

19: end for

20: return Best

3.3 Nested Bilevel Genetic Algorithm

Within the context of integrated (long-term) staffing and scheduling problems, Maenhout and
Vanhoucke [16] point out that most researchers (e.g. [1, 15, 11, 26, 3]), including themselves,
iteratively alternate between the staffing and the scheduling problem as they are creating and
evaluating personnel schedules based on certain staffing decisions. This was also noted by
more recent research [12]. This basic procedure also applies for the evolutionary bilevel
approach.

Following the taxonomy given by Talbi [24], the here presented procedure can be defined
as a nested constructing approach with metaheuristics on both levels. In this type of bilevel
model, an upper-level metaheuristic calls a lower-level metaheuristic during its fitness
assessment. In doing so, the upper-level heuristic determines the decision variable x (here the
number of employees for each type) as input of the lower-level algorithm, which in turn
determines the decision variable y. Both variables are subsequently used to solve the bilevel
problem at the upper-level. By the existence of a multi-objective optimization problem, non-
dominated sorting is used to evaluate the fitness of each individual at the upper-level GA [21].
As a result, a Pareto front will be built of all non-dominated solutions evaluated at the upper-
level (see Algorithm 2, line 10 and 11). An overview of the nested bilevel GA applied in this
paper is shown in Algorithm 2.

Algorithm 2 Overview of nested bilevel GA in pseudocode
1: initialization (see Algorithm 1, lines 1-3)

2:Best < {}

3: for generations times do

4: for each individual P; € P do

5: call lower-level GA with P; as input (see Algorithm 1)
6: end for

7: Fitness(P)

8: A < ParetoFront(P) U Best

9: Best < ParetoFront(A)

10: reproduction (see Algorithm 1, lines 11-18)

11: end for

12: return Best
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One major issue when applying bilevel optimization are the long computation times.
Preliminary experiments showed that after the evaluation of the first four weeks (of 52 in total)
at the lower-level GA, it was already roughly possible to determine the quality of the staffing
decision. Once the fitness of two individuals showed a deviation of at least 100% in the fourth
week, the fitness development of both individuals did not tend to change. This behavior was
used to implement termination criteria, which were applied at different points during the
fitness assessment of each individual at the lower-level problem. Once one criterion applies,
the evaluation of the individual at the lower-level is terminated.

In general, at each termination checkpoint the assessed individual is compared to all
individuals included in the current Best Pareto front (upper-level problem). The first two
checkpoints are set after the fourth and eighth week. Here, the assessment is terminated if the
overall penalty of the assessed individual is higher by a factor of d=2 compared to any of the
solutions of the Best Pareto front at the given weeks. However, as there is no point in keeping
solutions with lower fitness and higher costs but, on the other hand, solutions with lower
fitness and lower costs could be interesting, the termination only applies if the costs of the
assessed individual are higher or equal to the compared individual. The last termination
checkpoint is set after week twelve. Here, the assessment is terminated if the overall penalty
deviates by a factor of d=3 regardless of the solution’s costs. To avoid termination due to
outliers, two consecutive weeks are checked within the termination checkpoints.

By applying these criteria it is possible to early identify irrelevant staffing decisions (e.g.
too many employees or only one employee type) and to concentrate on more promising
solutions. The experiments showed that by implementing these three termination checkpoints,
the performance already increased significantly. However, to identify subsequent deviations
there could also be implemented more checkpoints during the entire fitness assessment.

4  Computational Results and Discussion

4.1 Experimental Setup

The parameters of both GA were set based upon preliminary studies. For the upper-level GA, a
population size of 20, a generation number of 40 and n=10 restarts were chosen, with each
restart having a random initial population. The lower-level GA was configured with a
population size of 50 and a generation number of 80. On both levels the mutation rate was set
to 1/v, with v being the number of bits of the encoded individual. The fitness at the upper-
level was evaluated by Eq. (2a), for the fitness evaluation at the lower-level Eq. (3a) was used.

The optimization software was written in Julia [5] and all experiments were executed on
Windows 10 machines with Intel Core 15-2400K processors (4 cores, maximum clock rate 3.1
GHz) and 4 GB RAM. By applying the termination criteria the computation time could be
reduced by 50%, however, despite parallel computation within the fitness assessment at the
upper-level, each restart of the upper-level algorithm took about twelve hours.

For this experimental study, the following scenario is assumed. The call center has an
initial staffing level based on the estimated demand for the year 2017 (see Table 3, solution 1).
For the coming year, the company expects a 20% increase in demand. The estimated demand
for both years (aggregated agent hours) is shown in Fig. 1. Furthermore, Fig. 2 shows the
demand fluctuations in hourly resolution for an exemplary day. The data used for the
experimental study was created by using a demand generator relying on slightly modified real
world data (see [13] for more details on the used demand generator). The demand for the other
two skills is calculated based on staffing ratios. In this concrete case, one support for each four
and one supervisor for each eight agents is required.

Moreover, it is assumed that each employee has six weeks of holidays. As the generation
of employees is done automatically during the optimization procedure, the holidays of each
employee are assigned randomly on a weekly basis. However, while doing so it is assured that
at maximum 30% of each skill type can be on holidays at the same time, the holidays are
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equally distributed over the whole year and there are two consecutive weeks of holidays during
the summer period (June until September).
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£ 400 g 8
S ]
= 300 & 6
E <
:1‘3 200 * 4
100 2
0 0
1 4 7101316192225283134374043464952 8 9 10 11 12 13 14 15 16 17
Weeks Hours
= e e o demand 2017 e demand 2018 e demand
Fig. 1 Weekly demand of agent hours over the Fig. 2 Exemplary demand of a
planning horizon single day

4.2 Results and Discussion

For the purpose of demonstration and because the Pareto fronts tend to show similar behavior
over multiple runs, the upper-level optimization algorithm was executed n=10 times, with each
restart yielding a set of Pareto optimal solutions. The combined solutions of all Pareto fronts
are shown in Fig. 3. Without the consideration of outliers and solutions that did not pass the
termination criteria, a total of 134 possible staffing decisions with different combinations of
costs and scheduling penalties were found (based on the demand for 2018). For further
discussion, 15 solutions along the new Pareto front were selected. A detailed description of the
selected staffing decisions can be found in Table 3.

)

o
0 €6
18

16 %

14
0’% o
. &,

10

Staffing costs
@
B
o

10 15 20 25 30 35 40 45 50
Scheduling penalty (thousands)

O combined Pareto fronts @ selected solutions

Fig. 3 Possible staffing decisions (n=10 optimization runs)
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The first two solutions shown in Table 3 represent the initial staffing level, optimized
with the demand for 2017 and 2018. Solutions 3 to 17 represent the optimized staffing levels
based on the demand for 2018. When looking at the results of solution 2, due to the rising
demand and therefore an insufficient number of employees, the penalty for understaffing and
flextime increased and the overstaffing penalty decreased (compared to solution 1). The
resulting scheduling quality of solution 2 now is comparable to the quality of solutions 11 to
13, which furthermore show approximately the same cost level. In case the company wants to
retain its service level of 2017 (considering the understaffing penalty of solution 1), the current
workforce should be developed towards the staffing level of solution 8. Taking a more general
look on the results, it can be noted that no solution below the cost level of 9.2 passed the
termination criteria within the fitness assessment. The low costs can simply be explained by
the insufficient staffing level, resulting in high understaffing and flextime penalties. Looking at
the staffing decisions in Table 3 from bottom to top, it can be seen that the scheduling quality
grows with an increasing number of employees and increasing contractual working hours, and,
hence, rising staffing costs. Furthermore, when comparing solutions 8 and 7 with 6 to 3, an
increased employment of cross-trained and part-time workers can be noticed yielding the
highest scheduling quality. However, no solution was found above the cost level of 20.85. This
may indicate that there is a point at which scheduling quality cannot be increased under the
given staffing and scheduling policies. Thus, measures to further improve the scheduling
quality could be, for example, the introduction of new contract types (e.g. contracts with a
working time of 30 or 12 hours per week) or more flexible shift patterns to better compensate
varying demand over the day (e.g. short 2h shifts).

5 Conclusion and Future Research

In this paper, a model for strategic long-term staffing was presented considering varying
demand, different types of employees regarding skills and contractual working times as well as
compensation of overtime due to flextime policies. For this purpose, an evolutionary bilevel
algorithm with GA on both levels was applied, optimizing the staffing decision at the upper-
level and simultaneously evaluating the resulting workforce structure by the creation of
personnel schedules over a planning horizon of 52 weeks. This integrated staffing and
scheduling approach was demonstrated by the example of the yearly workforce planning of a
midsized call center. The computational results indicate that the proposed procedure could be
used to support corporate decision making related to strategic workforce planning. Due to the
nested structure and independent formulation of the staffing and the scheduling problem, both
problems could generically be replaced. Therefore, the model is not limited to the considered
call center problem but could be used for any other kind of (strategic) workforce planning
involving personnel scheduling.

However, an important limitation arises from the fact that the optimization problem at the
lower-level only was executed once, which leads to noisy results. Thus, there is a risk of
discarding a possibly good solution due to one “unlucky” optimization run at the lower level.
Moreover, it is hard to compare solutions being close to each other (e.g. solutions 4 to 6).
These issues could be solved by restarting the lower-level algorithm multiple times, which in
turn will lead to a massive increase of computation time. As this is a general challenge when
applying bilevel optimization, further research should be aimed at executing the bilevel
algorithm more efficiently, e.g. by applying more precise termination criteria, using distributed
computation or approximation of the lower-level model. Other opportunities for further
research are seen in comparing the here proposed approach to the methods presented in Section
1 (e.g. regarding speed and quality) as well as the consideration of uncertainty and unplanned
events during the optimization procedure, such as illness, fluctuation or infra-annual hiring of
employees.

As stated in Section 4.2, there may be the need not only to optimize staffing decisions,
but also staffing and scheduling policies. The study presented in this paper was limited to
optimize the staffing decision as input of the scheduling problem. However, further research
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should be conducted addressing the possibility to optimize all framework conditions related to
personnel scheduling, such as shift types, overtime and break regulations or any other type of
adjustable constraints. This could potentially increase the solution quality attainable, but would
in turn raise the complexity of the optimization problem considerably.

References

1. Abernathy WJ, Baloff N, Hershey JC, Wandel S, A Three-Stage Manpower Planning and
Scheduling Model—A Service-Sector Example, Operations Research 21(3), 693-711
(1973)

2. Avramidis AN, Chan W, Gendreau M, L’Ecuyer P, Pisacane O, Optimizing daily agent
scheduling in a multiskill call center, European Journal of Operational Research 200(3),
822-832 (2010)

3. Belién J, Demeulemeester E, A branch-and-price approach for integrating nurse and
surgery scheduling, European Journal of Operational Research 189(3), 652—-668 (2008)

4. Belién J, Demeulemeester E, Bruecker P de, van den Bergh J, Cardoen B, Integrated
staffing and scheduling for an aircraft line maintenance problem, Computers &
Operations Research 40(4), 1023-1033 (2013)

5. Bezanson J, Edelman A, Karpinski S, Shah VB, Julia. A Fresh Approach to Numerical
Computing, SIAM Rev. 59(1), 65-98 (2017)

6. Branke J (ed.), Multiobjective optimization. Interactive and evolutionary approaches.
Lecture Notes in Computer Science, vol. 5252. Springer, Berlin (2008)

7. Bruecker P de, van den Bergh J, Belién J, Demeulemeester E, Workforce planning
incorporating skills. State of the art, European Journal of Operational Research 243(1), 1-
16 (2015)

8. Brunner JO, Edenharter GM, Long term staff scheduling of physicians with different
experience levels in hospitals using column generation, Health care management science
14(2), 189202 (2011)

9.  Coello Coello CA, Lamont GB, van Veldhuizen DA, Evolutionary algorithms for solving
multi-objective problems, 2nd edn. Genetic and evolutionary computation series.
Springer, New York, NY (2007)

10. Colson B, Marcotte P, Savard G, An overview of bilevel optimization, Ann Oper Res
153(1), 235-256 (2007)

11. Easton FF, Rossin DF, Borders WS, Analysis of Alternative Scheduling Policies
for Hospital Nurses, Production and Operations Management 1(2), 159-174 (1992)

12.  Erhard M, Schoenfelder J, Fiigener A, Brunner JO, State of the art in physician
scheduling, European Journal of Operational Research (2017)

13. Giinther M, A Generator for Volatile Demand Profiles. A Brief Description of a Tool.
GRIN, Munich (2017)

14. Hansen P, Jaumard B, Savard G, New Branch-and-Bound Rules for Linear Bilevel
Programming, SIAM J. Sci. and Stat. Comput. 13(5), 1194-1217 (1992)

15. Henderson JC, Krajewski LJ, Showalter MJ, An integrated approach for manpower
planning in the service sector, Omega 10(1), 61-73 (1982)

16. Maenhout B, Vanhoucke M, An integrated nurse staffing and scheduling analysis for
longer-term nursing staff allocation problems, Omega 41(2), 485-499 (2013)

17. Nissen V, Applications of Evolutionary Algorithms to Management Problems. In:
Moutinho, L., Sokele, M. (eds.) Palgrave Handbook of Innovative Research Methods in
Management. Palgrave Macmillan, Basingstoke (2017)

18. Rothlauf F, Design of Modern Heuristics. Springer Berlin Heidelberg, Berlin, Heidelberg
(2011)

19. Sean Luke, Essentials of Metaheuristics. Lulu (2013)

20. Sinha A, Malo P, Deb K, A Review on Bilevel Optimization. From Classical to
Evolutionary Approaches and Applications, IEEE Trans. Evol. Computat., 1 (2017)

- 156 -



21.

22.
23.

24.

25.

26.

27.

8th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2017)
5-8 December 2017, Kuala Lumpur, Malaysia

Srinivas N, Deb K, Muiltiobjective Optimization Using Nondominated Sorting in Genetic
Algorithms, Evolutionary computation 2(3), 221-248 (1994)

Stackelberg H, The theory of market economy. Oxford University Press, Oxford (1952)
Talbi E-G, Metaheuristics. From design to implementation. Wiley Series on Parallel and
Distributed Computing, v.74. John Wiley & Sons, Hoboken, NJ (2009)

Talbi E-G (ed.), Metaheuristics for Bi-level Optimization. Studies in Computational
Intelligence, vol. 482. Springer, Berlin, Heidelberg (2013)

van den Bergh J, Belién J, Bruecker P de, Demeulemeester E, Boeck L de, Personnel
scheduling. A literature review, European Journal of Operational Research 226(3), 367—
385 (2013)

Venkataraman R, Brusco MJ, An integrated analysis of nurse staffing and scheduling
policies, Omega 24(1), 57-71 (1996)

Yin Y, Genetic-Algorithms-Based Approach for Bilevel Programming Models, Journal of
Transportation Engineering 126(2), 115-120 (2000)

-157 -



8th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2017)
5-8 December 2017, Kuala Lumpur, Malaysia

MISTA 2017 |

A constraint programming approach for the
energy-efficient job shop scheduling problem

Angelo Oddi - Riccardo Rasconi - Miguel A.
Gonzélez

Abstract Optimising the energy consumption is one of the most important issues in
scheduling nowadays. In this work we consider a multi-objective optimisation for the
well-known job-shop scheduling problem. In particular, we minimise the makespan and
the energy consumption at the same time. We consider a realistic energy model where
each machine can be in off, stand-by, idle or working state. We design a constraint-
programming approach that also uses a piecewise linear programming step to further
optimise the energy consumption of the solutions. Experimental results illustrate the
potential of the proposed method, outperforming the results of the current state of the
art in this problem.

1 Introduction

The job shop is a scheduling problem widely studied in the literature due to the fact
that it is a model which is close to many real production environments. It is proven
that the job shop is NP-hard, and so its resolution is very complex. In the literature
we can find many different solving approaches for the job shop, from exact methods to
all kinds of meta-heuristic algorithms.

Although the makespan is the most studied objective function (see for example
[1], [4] or [18]), energy considerations are increasingly important nowadays, mainly for
economical and environmental reasons. In fact, we can find many recent approaches
that tackle different scheduling problems with energy considerations. For example, in
[5] the authors solve a flexible flow shop scheduling problem with energy costs by using
a genetic-simulated annealing method. In [17] a single machine problem is studied,

Angelo Oddi
Institute of Cognitive Sciences and Technologies, ISTC-CNR, Italy
E-mail: angelo.oddi@istc.cnr.it

Riccardo Rasconi
Institute of Cognitive Sciences and Technologies, ISTC-CNR, Italy
E-mail: riccardo.rasconi@istc.cnr.it

Miguel A. Gonzalez
Department of Computing, University of Oviedo, Spain
E-mail: mig@uniovi.es

- 158 -



8th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2017)
5-8 December 2017, Kuala Lumpur, Malaysia

where the machine can be switched on and off. Other papers, as for example [10], even
consider shifting energy costs.

There are also some papers addressing the energy-efficient job shop. For exam-
ple, in [20] the authors try to minimise both the weighted tardiness and the energy
consumption in a job shop where the processing mode of operations can be modified.
Another approach is that of [14], where the authors consider a simple energy model
where the machines can only be in Working or in Idle state. In [9] the authors improve
the results reported in [14] by using a hybrid evolutionary meta-heuristic and also a
constraint-programming approach. One problem with the last two papers is that the
considered energy model is not too realistic. The model proposed in [15] is much more
interesting, as the machines can be either in the Idle, Working, Off, or switched to a
Stand-by state.

In this paper we consider this last energy model and try to minimize at the same
time the makespan and the energy consumption in a job shop. Although some multi-
objective works consider weighted or lexicographical approaches, probably the most
interesting approaches are those based on the Pareto Front.

In particular, we have designed a set of constraint-based procedures to minimise
both the makespan and the energy consumption, within a well-studied multi-objective
optimisation method to generate the whole Pareto (i.e., the e-constraint method [16]).
The contribution of the paper is twofold: first, we design a constraint-based model
where we add as decision variables the states of the machines during the no-working
periods (i.e., Idle, Off, or Stand-by states); second, in order to take into account the non-
regularity of the energy objective function, we design a piecewise-linear programming
approach to post-process a full input solution and minimise the energy consumption
within the same makespan.

This paper is organised as follows: Section 2 formulates the problem at hand and
Section 3 describes the solving methods. Then, in Section 4 we analyse our proposals
and we compare them with the state-of-the-art algorithms [15], and finally in Section
5 we report the conclusions of our work and remark some ideas for future work.

2 Problem formulation

The job shop scheduling problem (JSP) consists on scheduling a set of N jobs, J =
{J1,...,JN} in a set of M machines or resources, R = {R1, ..., Rys}. Each of the jobs
J; consists of n; tasks (61, ..., 0in,) that must be scheduled exactly in that particular
order. Each task requires a given resource during all its processing time. Additionally,
no preemption is allowed, so when a resource starts processing a task, it cannot be
interrupted until it ends. Moreover, resources can at most process one task at a time.
The objective of the problem is to minimise some objective functions subject to the
described precedence and capacity constraints. Although we have denoted the tasks as
0;; in this problem definition, in the following we will denote them by a single letter,
if possible, in order to simplify the expressions. We denote by {2 the set of tasks, by
pu the processing time of task u, by 7, the resource required by task u, and by sy the
starting time of task u (which needs to be determined).

As we have seen, the JSP has precedence constraints, defined by the routing of the
tasks within the jobs, that translate into linear inequalities: sy + pu < Sy, where v is
the next task to w in the job sequence. The problem has also capacity constraints, as
the resources can only process one task at a time, and they translate into disjunctive
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constraints: (sy + pu < sv) V (Sv + pv < su), where u and v are tasks requiring the
same resource. The objective is to build a feasible schedule, i.e. determine a starting
time for each task such that all constraints are fulfilled. In the following, given a
feasible schedule, we will denote with PJ, and SJ, the predecessor and successor of
v, respectively, in the job sequence, and with PM, and SM, the predecessor and
successor of v, respectively, in its resource sequence. In addition, we will denote with
ap and wy the first and last operations respectively on machine Ry in the considered
schedule.

The goal of the present analysis is the minimisation of both the energy consumption
and the overall completion time, or makespan. In general, for a minimization problem
with two objective functions f; (¢ = 1,2), a solution S is said to be dominated by
another solution S’, denoted S’ < S, if and only if for each objective function f;,
fi(S) < £i(S) and there exists at least one i such that f;(S") < f;(S). However,
the possibly conflicting nature of these two objectives may prevent the existence of a
unique solution S* that is optimal w.r.t. both the objectives. Therefore, in this work
we are interested in the set of all optimal “tradeoffs”, which are known as the Pareto
optimal solutions. A Pareto optimal solution is a solution such that the improvement
of one objective necessarily implies the worsening of the other objective. The Pareto
front PS* is the set of solutions S, such that for each S € PS* there is no solution S’
which dominates S (S’ < S).

The makespan is the first objective function and corresponds to the maximum
completion time of the schedule, that is

1
Lneag{Su + pu} 1)

About the second objective the energy model is taken from [15], where it is supposed
that a resource can be in five different states: Off, Stand-by, Idle, Setup or Working.
However, May et al. in their experiments from [15] consider together the times and
energy consumption of the Working and Setup states; as a consequence, we can consider
a total of four possible states (see Figure 1). The power consumption in each state

for a given resource Ry, is denoted by P,zdle, P,:mnd_by and Pkworkma whereas if the

machine is Off it consumes no power. Additionally, we assume that the machine can
instantly switch from Idle to Stand-by, Off or Working, consuming no power. On the

other hand, switching from Off to Idle requires an amount of T]:amp'u["oﬁ time units,

whereas switching from Stand-by to Idle requires T} """ -stand-by i me units. In both
cases, the power consumed when ramping up is denoted by P,:amp P In Figure 1
we show the considered state diagram, which is the same for each machine. Also, we
assume that all machines do not consume any energy before the processing of its first
task assigned. It is easy to see that in the job shop scheduling problem, each resource
must always process the same set of tasks, and so the working energy consumption is
the same in every possible schedule. Therefore, following [15], in order to reduce the
energy consumption we consider the WEC (Worthless Energy Consumption) measure
as the second objective function to minimize, which is defined as follows:

WEC = Z [Plidle t;cdle + P;tand—by tztund-by] +
k=1,...,.M

(2)

Z PI:amp-up (n;'amp—up—standby T};ump-up»standby + n;;amp-up—oﬁ le'mnp—up-oﬁ)

k=1,...,.M
where t}-gdle is the total amount of time spent by Ry in Idle state, tzt(md_by is the total
amount of time spent by Ry, in Stand-by state, nZamP_up_smndby is the number of times
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ramp—u ramp—up—of f
Pk P prk p—up—off 0

Processing

Pkramp -up x T’:amp —up-standby

Fig. 1 State diagram for a machine, indicating the energy consumed in each transition

that resource Ry, transitions from Stand-by to Idle state, and finally n,*"*™" “olf i the

number of transitions from Off to Idle.

To the aim of assessing how the power consumption of the machines may vary
depending on the different states to which they are allowed to transition, we follow
the analysis performed in [15], taking into account two different machine behavior
policies, which we will respectively call P3 and P4 as described in the following. The
P3 policy is implemented by switching the machines on at their first operation and
switching them off at their last, with the possibility to switch them on and off from
the Idle state, between any pair of consecutive tasks belonging to the production batch
(see Figure 1). The P4 policy is similar to the previous one, with the addition of the
Stand-by state. According to the P4 policy, each machine can transition from the Idle
state to the Stand-by state during the production batch, whenever such transition is
energetically convenient over both switching the machine on and off again, and leaving
it in the Idle state. In [15] two more policies called P1 and P2 are investigated, but
such policies are not taken into account in this work because they are very simple and
hence not of great interest for our purposes.

According to [3], the makespan is a regular performance measure, which means that
it can be increased only by increasing at least one of the completion times in a given
schedule. To optimize regular measures it is enough to consider “left-shift schedules”,
i.e. schedules that are built from a partial ordering of the tasks, in such a way that
each operation starts in the earliest possible time after all the preceding tasks in the
partial ordering. As opposed to the makespan, the WEC is a non-regular measure, and
it can sometimes be decreased by increasing the completion time of some tasks while
leaving the other tasks unmodified.

2.1 Solution example

To better illustrate the problem, in this section we present a small toy example. Con-
sider an instance with 3 jobs (with 3 tasks for each job) and 3 resources. The pro-
cessing times are the following: pg,, = 4, Pg,, = 5, Pos = 2, Poyy = 2 Phyy = O,
Doy = 3, Pos; = 4, Pos; = T, Doz = 3. The required resources are the following:
rg,, = Ri, ro,, = Ro, 19,3 = Rs, rg,, = Ri1, r9,, = R3, r9,, = Ra, 19;, = Ra,
Ty, = R1, Tg,; = R3. Also, consider the following values for every machine k£ €
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Fig. 2 Feasible solution for an example instance using a “left-shift schedule”.
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Fig. 3 Improving the solution of figure 2 by delaying one task.

{1,2,3): PYorRin — 108w, Pidle = 6kw, PSUYY = akw, Pl = 8kW,

Tkramp—up»oﬁ — 3 and Tkramp—up»stand—by -1

Figure 2 shows a feasible solution for this instance. In fact it is a “left-shift sched-
ule”, i.e. every task starts as soon as possible in the considered partial ordering. This
schedule has a makespan of 18 and a WEC of 40 (16 from Rg plus 24 from R3). In
resource Ro we have decided to switch the machine to Stand-by state between the end
of f31 and the beginning of 623, because in this case it adds 16 units to the WEC,
whereas if switched Off it would add 24 units and if it remained Idle it would add 18
units. Using the same reasoning we decided to switch R3 off between the end of 622
and the beginning of 633.

It is easy to see that these “left-shift schedules” can be easily improved by delaying
some tasks. Figure 3 shows the same solution after delaying task 631. Now there is only
one time unit between the end of 637 and the beginning of 623, and so the best option
is to leave the machine in Idle state. The makespan is still 18 but the WEC is reduced
from 40 to 30.

3 The proposed solving method

As we have seen in the previous section, the WEC is a non-regular performance mea-
sure. Moreover, the work [15] only considers “left-shift schedules”, while we have seen
that they can be improved by delaying some tasks, in order to reduce the total en-
ergy consumption. In the next section we describe a two-step procedure that takes
into account the non-regularity of the WEC objective such that an approximation
of the Pareto front is generated by a Constraint Programming (CP) procedure (first
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step), which is further improved by a Piecewise Linear Programming post-processing
optimization (PO) procedure (second step). It is worth noting that the proposed CP
approach is in principle able to find an optimal WEC value if given sufficient compu-
tational time (we do not provide any formal proof about this property). Nonetheless,
in our heuristic approach we use the post-processing step to improve the WEC (non-
regular) measure because it allows to reach better solutions in a shorter time, provided
the solution it inherits from CP is good enough. As the experiments confirm, the PO
procedure is able to give better performance over the single-step CP approach.

3.1 Energy optimisation procedure: a Constraint Programming approach

Constraint Programming (CP) is a declarative programming paradigm [2] suitable
for solving constraint satisfaction and optimisation problems. A constraint program is
defined as a set of decision variables, each ranging on a discrete domain of values, and
a set of constraints that limit the possible combination of variable-value assignments.
After a model of the problem is created, the solver interleaves two main steps: constraint
propagation, where inconsistent values are removed from variables domains, and search.

Constraint Programming is particularly suited for solving scheduling problems
where the decision variables are associated to the problem operations. In particular,
each operation variable a is characterised at least by two features: s, representing
its start time, and p, representing its duration. For scheduling problems, a number
of different global constraints have been developed, the most important being the
unary-resource constraint [19] for modelling simple machines, the cumulative re-
source constraint [13] for modelling cumulative resources (e.g., a pool of workers), and
the reservoir [11] for modelling consumable resources (e.g., a fuel tank). In particular,
given unary-resource (A), the constraint holds if and only if all the operations in the
set A never overlap at any time point. A number of propagation algorithms are embed-
ded in the unary-resource constraint for removing probably inconsistent assignments
of operation start-time variables.

We describe a Constraint Programming (CP) model based on the problem defined
in Section 2, where the main decision variables are the start times sq of the operations
a € {2 characterized by a processing time p,. Each start time s, ranges in the interval
[0, H—pq], where H is the problem’s horizon. The decision variables set is then extended
with the start times sopof, of the OnOff;, intervals, where each OnOff;, interval is
defined as spanning over all the operations executed on machine k. Hence, the SOnOff,
variable represents the first instant when machine k is turned on. The model, whose
utilisation will be described in the experimental section (Section 4), is built on top of the
IBM-ILOG CPLEX Optimization Studio CP Optimizer and its details are presented
below.

Let Oy, be the set of problem operations assigned to machine k = 1,..., M and Uy a
set of auxiliary unit-duration operations, assigned to a dummy unary machine mirroring
k (it is worth noting that the two sets Oy, and Uy, represent separate processing orders
of activities). The introduction of the auxiliary set of operations Uy, Lig necessary to
represent the position of each activity a € Oy, in the processing orders imposed among

1 We were inspired to adopt this solution by a post on a discussion board on the website www.
or-exchange. com about the explicit representation of an interval position in a OPL sequence.
At the date of the writing of this note, this discussion board does not seem available anymore.
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the operations assigned to each machine & € R. More concretely, the auxiliary unit-
duration operations indirectly implement the definition of a successor function SM,
(returning the successor of each operation a for each total order imposed on the set of
operations Oy, assigned to a machine k). To the best of our knowledge, this workaround
is necessary because we want to use the native OPL construct to implement the global
constraints unary-constraint (Oy) for efficiency reasons, and the successor function
is not natively present in the OPL language (see IBM ILOG CPLEX Optimization
Studio OPL Language Reference Manual, Version 12 Release 7.1).

Operationally, the set of unit-duration operations u € Uy can be assigned to the
dummy machine k& (in the same fashion of the operations a) so that, for each processing
order imposed on a machine k, ag < ai,...,< a;,... < aps, an identical order is
imposed on the unit-duration operations ug < u1,...,< u;,... < ups. In this manner,
the position i of the operation a; coincides with the start-time value of the unit-duration
operation u;. For the reasons above, the starting times s, of the operations u € U}
must be added to the model as additional set of decision variables.

SM, = q. (@) 6' Uk : 8500 = Sy t+1
nil otherwise

k . idle
Epq =min{ P, dpq,

stand-by ramp-up-standby ramp-up ramp-up-standby
Pk ( T, ) + Pk T,

dpq -
P,:amp—up T,:amp-up-oﬁ} (3b)

WEC= Y > B (3¢)

k=1,...,.M p€O0y,
q=SMy, q#nil

Cmaz = max{sq + pa} (3d)
a€s?

The definition (3a) represents the successor function SM) such that the position of
the operation p € Oy coincides with the start-time value s,(,) of its corresponding
unit-duration operation ul? e Uy, and the successor ¢ (if exists) corresponds to the
unary activity 0@ e Uy, such that s, = s, + 1. Whereas, according to Section 2,
the energy objective WEC' (3c) is the sum of the unload energy consumption qu (i.e.,
when a machine is Idle, switched Off, or switched to a Stand-by state) of each pair of
contiguous operations (p, ¢) assigned on the same machine k (3b), where dpq = sq—ep is
the difference between ¢’s start time and p’s end time. The makespan objective Caz
is described at line (3d), and follows the classical definition. Once all the necessary
definitions have been provided and all the variables have been introduced, we present
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the CP model (optimisation criteria and constraints).

lex min (WEC, Crmax) (4a)
s.t.:

Cmaz < Ce (4b

sv+pu <ssy, VENR\{Oing,. ., ONnyt

span(OnOffy,, Or) k=1,2,..,.M

edp €{0,1,2} pe 2 (

SMp =qANedp, =0= 55 —ep < T,ﬁdle_smndby (4f

idle-standby A sq < T]:tandby-oﬁ

SMp =qNedp=1=sq—ep>T, —ep (

SMp=qAhedp=2=sq—ep> T,fta"dby_oﬁ (4h
same-sequence (O ,Ur) k=1,...,M (4
su < |O] — 1 V& (4j
unary-constraint(Op)k=1,..., M (4k
unary-constraint(Up)k=1,..., M (41

Line (4a) represents the lexicographic minimisation of the objective pair (WEC, Cmaz)
with the energy WEC as primary objective. According to the implemented e-constraint
method [16] for calculating the Pareto set we optimise the energy WEC, while we
impose an upper bound to the other objective Ciaq in the form Cpmar < Ce (see
(4b)). The constraints in (4c) represent the linear orderings imposed on the set of
operations {2 by the set of jobs J. Constraints (4d) impose to the set O}, of operations
requiring machine k to be contained in the spanning operations OnOff;,, k =1,..., M.
More specifically, for each operation v € Oy, the following constraints sonof, < sv
and sy +pv < sonoff, TPonog, hold, such that operation OnOff), starts together with
the first present operation in Oy, according to the order imposed on the k-th machine,
and ends together with the last present operation according to the same order.
Constraints (4f), (4g), (4h), impose respectively, for each pair of contiguous activ-
ities (p,q) on a resource k, the temporal constraint sq — ep < Tédle'smndby,

T;dle-standby/\SU —ey < T]jtandby—oﬁ

Sq —€p >
, 0T Sqg—ep > T,:mndby_oﬁ. In turn, such constraints
guarantee that the minimal unload energy state is respectively Idle, Standby or Off be-
tween (p, q). To this purpose, we introduce a set of decision variables ed, € {0, 1,2},
p € (2 representing the unload state (i.e., 0 when machine is Idle, 1 when is switched to a
Stand-by state, and 2 when switched Off ) imposed on every pair of contiguous activities
(p,q) on the same machine. We note that, under the hypothesis P,fmnd'by < P]idle <
P]:amp—up and T]:amp—up—standby < T]:amp—up—oj'jc7 two cut-off Values, T]idle—standby and

lemndby'oﬁ can be calculated such that the minimal energy state will be Idle if

Sy — €y € [0,TI’CL‘clle—\s‘tandby]7 St(md—by when sy — ey € (Tl'cédle—stamdby7 Tl\:tandby—oﬁ}’ and
Off otherwise; see Figure 4 for a graphical representation of the three energy intervals
determined by the two cut-off values. The constraints in (4i) impose the same order
between the activities in the two sets Oy and U, by means of the global constraints
same-sequence (O ,Uy). The constraints in (4j) bound the start-time value of each
unit-duration operation u to |Oy| — 1 operations assigned to the machine k. Finally,
(4k) and (41) represents the non-overlapping constraints imposed by the machines M to
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Fig. 4 Minimal energy consumption between two consecutive operations (p,q) on the same
machine.

Algorithm 1 Bi-criterion e-constraint method

Require: The objective f, the bounds frﬁ)n and fﬁfﬁz, and the decrement value §
P« 0;
(2)

while € > fT(fl)n do
S + CP(f, ¢);
if (S#£nil)A(AS € P:S <5) then
P+ (PU{SH\{S eP:5<5'};
end if
€<+ €—0;
end while
return P

the operations in Oy, and Uy, through the global constraints unary-constraint (Og)
and unary-constraint (U,), respectively.

A well-known multi-objective optimization method to generate the Pareto front
is the e-constraint method [16]. It works by choosing one objective function as the
only objective and properly constraining the remaining objective functions during the
optimisation process. Through a systematic variation of the constraint bounds, different
elements of the Pareto front can be obtained.

Algorithm 1 presents the e-constraint method for the case of a bi-criterion objective
function f = (f(l),f@)). The algorithm is used in the experimental section of the

work and takes the following inputs: (i) the objective f, (ii) the bounds f(z) and

min
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(2)

maz on the second component of the objective, and (iii) the decrement value §. As
previously mentioned, the method iteratively leverages a procedure provided in input
to solve constrained single-objective problems (the CP() procedure corresponding to
the constraint programming model previously described). The algorithm proceeds as
follows: after initializing the constraint bound € to the fy(,%,zx value, a new solution S is
computed by calling CP() at each step of the while solving cycle. If S is not dominated
by any of the existing solutions in the current Pareto front P, then S is inserted in
P, and all the solutions possibly dominated by S are removed from P. The rationale
behind this method is to iteratively tighten the constraint bound by a pre-defined
constant § at each step of the solving cycle. A similar procedure is the adaptive e
constraint method described in [12]; the main difference with respect to our algorithm
is that, as soon as a new solution S is found at each iteration, the constraint bound is
tightened by the value f(2)(S). We will test this procedure in a future and extended
version of this work.

3.2 Post-optimization: a piecewise linear programming approach

The solution returned by the energy optimisation procedure described in the previous
Section 3.1, in case the WEC value in not optimal, can be further improved if we
keep the processing ordering of the operations on all the machines and find a differ-
ent assignment of the starting times of the operations in order to possibly obtain a
reduction in the WEC energy consumption. As checking for all these possibilities is
computationally expensive, we choose to apply this idea only to the solutions in the
approximate Pareto front returned by the proposed CP approach. To this end, given
the problem definition of Section 2 and an input solution S, we consider the following
piecewise linear programming problem [§].

minWEC = > > EE,

k=1,....M p€Oy,
q=SMp, q#nil
st.: sy +pu<ssy, vEN\{Oiny, ONny} (5a)
So+po <sgm, vEM\{wr}, k=1,..,.M (5b)
0<sg, i=1,.,N (5¢)
8977"-; +p9ini <Cmaz i1=1,.,N (5d)

Decision variables are the starting times of the operations s, with v € 2. Constraints
(5a) represent the linear orderings imposed on the set of operations {2 by the jobs J,
note that they hold for each operation v € {2 except when v is the last operation of a job
Ji. The processing orderings on the machines in S are represented by constraints (5b),
note that, for each machine k, we do not consider the last activity wj of the imposed
total ordering. Constraints (5¢) impose to the first operation ;1 of each job J; to start
after the reference value 0, whereas Constraints (5d) impose to the last operations 6y,
of each job J; to end before the makespan value Crez of the input solution S. It is
worth noting that under some restrictive hypotheses, the previous optimisation prob-
lem can be handled through a pure linear programming (LP) approach (e.g., concave
piecewise linear functions in maximization problems) [7]. However, these hypothesis
are not met in our case, and the above optimisation problem must be transformed into
an integer-linear program (ILP), e.g., see Chapter 17 in [8]. This is the approach used
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in the following experimental section to implement the aforementioned piecewise lin-
ear program, using the IBM-ILOG CPLEX Optimization Studio. We propose to apply
the given piecewise linear programming approach to all solutions of the Pareto front
obtained with the proposed CP approach as a post-optimization (PO) step, in order
to further improve its final results.

4 Experimental results

In this section we will analyze the results we have obtained with our CP procedure, and
compare such results with the state of the art in [15]. In our work, we test our model
against three well-known JSP instances called, respectively, FT06, FT10 and FT20
(as considered in [15]). These instances were introduced by Fisher and Thompson [6],
and are characterized by different dimensions both for the number of jobs and for the
number of machines. In particular, the FT06 instance has 6 jobs and 6 machines, the
FT10 instance has 10 jobs and 10 machines, and the FT20 instance has 20 jobs and 5
machines. In the literature we can find the optimal makespan of these instances, which
is 55, 930 and 1165, respectively.

In our tests, we have mainly compared our results with those present in [15] and
related to the machine behavior policies P3 and P4 introduced in Section 2, as these
are the most interesting from the energy minimization standpoint. From the analysis
performed in Section 2, it is expected that the solutions obtained with the P4 policy
will exhibit lower energy consumptions that those obtained with the P3 policy.

Figure 5 graphically presents a comparison of the obtained results. The figure shows
6 plots organized in 3 rows (one row for each problem instance) and 2 columns (the
first column depicts the P3 policy results, while the second column depicts the P4
policy results). In particular, the plots labelled “MayEtAl-2015” describe the Pareto
front reported in [15], while the plots labelled “CP+PO” and “CP” describe the results
obtained with our CP model, with and without the Post-optimization (PO) procedure
described in Section 3.2, respectively. Relatively to the last row (FT20), we limited
ourselves to comparing our results with and without post-optimization, as the authors
of [15] did not extend their analysis to the FT20 instance case.

In these tests, for the CP phase we allowed for a maximum 5 minute for each FT06
solution and a maximum 15 minute for each F7'10 and F7T'20 solution, while for the
PO phase we allowed for a maximum 2 minute for every solution (though the optimum
was reached within an average of 10 seconds for almost all instances). Both the CP
and the PO models have been implemented on the IBM-ILOG CPLEX Optimization
Studio V. 12.7.1.0, a state-of-the-art commercial CP development toolkit, and executed
on a Core(TM)2 Duo CPU, 3.33 Ghz under Windows 10 Operating System.

As the Figure 5 shows, our CP model demonstrates a significant improvement over
the existing results, for both the FT06 and the FT10 instances, and for both the P3
and the P4 policy. In particular, the advantage of employing the post-optimization
procedure is clearly visible, especially for the FT10 and FT20 instances, where the
complexity of the solutions and the difficulty of the problem instances leave more room
for further optimization and readjustment of the activity start times associated to
the machine sequences. Relatively to the FT06 instance, the single solutions obtained
with the CP procedure in both policies clearly “kill” the Pareto obtained in [15], and
no further optimization margin is left for the post-optimization procedure (the single
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Fig. 5 The obtained results organized in 6 different plots, by problem instance (rows) and
considered policy (columns)

solutions obtained are exactly the same). This is probably due to the fact that, given
its small size, the FT06 instance can be easily solved to optimality.

To conclude the section, the exact numerical figures related to the Pareto fronts
shown in Figure 5 are reported in Tables 1 and 2, respectively for the P3 and P4
policies. Overall, if we compare policies 3 and 4, we can observe that the latter usually
obtains solutions with lower energy consumption. This means that, as expected, the
additional possibility of switching the machine to stand-by state is indeed beneficial.
For example, in the FT06 instance we were able to reduce the WEC from 126 to 124,
while maintaining the optimal makespan of 55. Another example is instance FT10,
where the solution with the optimal makespan (930) presents a WEC of 5000 using
policy 3 and 4798 when using policy 4. Also, in the solution with the optimal makespan
(1165) of instance FT20, the WEC is reduced from 246 to 198.
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Table 1 Pareto sets data relative to Figure 5 (Policy P3)

Problem [ Pareto Set - set of pairs (MKS, WEC)

FT06 MayBtAI-2015: { (60, 146), (59, 152), (57, 176), (56, 180), (55, 192) }
CP: { (55, 126) |
CP+PO: { (55, 126) |
10 MayEtAl-2015: { (1121, 2708), (1111, 3270), (1097, 3378), (1087, 3430), (1045, 3626),
(1034, 3678), (1028, 3792), (1017, 3864), (1016, 4008), (1010, 4188), (998, 4208), (988,
4310), (984, 4570), (982, 4758), (978, 4908), (974, 5840), (963, 5912), (939, 6001), (930,
6013) }
CD: { (1020, 3188), (990, 3658), (980, 3950), (970, 4424), (950, 4446), (940, 5178),
(930, 5354) }
CP+PO: { (1020 3038), (1000 3384), (980 3428), (950 4186), (940 4762), (930 5000) }
120 CP: { (1185, 0), (1175, 60), (1165, 204) J
CP+PO: { (1173, 0), (1165, 246) J

Table 2 Pareto sets data relative to Figure 5 (Policy P4)

Problem [ Pareto Set - set of pairs (M KS, WEC)

FT06 MayBtAI-2015: { (60, 146), (59, 152), (58, 174), (57, 176), (56, 178), (55, 192) }
CD: { (55, 124) J
CP+¥PO: { (55, 124) |

10 MayEtAl-2015: { (1121, 2708), (1111, 3268), (1097, 3378), (1087, 3406), (1060, 3512),
(1045, 3626), (1034, 3658), (1028, 3792), (1017, 3852), (1010, 3972), (998, 4208), (988,
4310), (984, 4538), (978, 4886), (963, 5182), (951, 5307), (940, 5402), (930, 5786) }
CP: { (1060, 3258), (1040, 3440), (990, 3880), (950, 4356), (945, 4022), (930, 5332) }
CP+PO: { (1060 3120), (1040 3362), (950 3638), (945 4524), (930 4798) }

FT20 CP: { (1195, 6), (1185, 18), (1165, 210) J
CP+PO: { (1182, 0), (1165, 198) }

5 Conclusions

In this paper we have considered a bi-objective optimization in the job shop scheduling
problem. We minimise at the same time the makespan and the energy consumption.
To this end, we consider an energy model in which each machine can be off, stand-by,
idle or working. To solve this complex, although interesting and realistic problem, we
designed a constraint-programming approach that also uses a piecewise linear program-
ming approach as post-optimization procedure. Our proposal is analyzed and compared
against the current state-of-the-art algorithm, obtaining better results.

For future work we plan to consider even more realistic energy models. For example
if we do not consider the setup and working states together we can have a more realistic
model, specially if the setup times are sequence-dependent. Additionally, considering a
flexible environment, i.e. a task can be performed by several machines, each one with
different energy consumptions and/or processing times, would lead to a more realistic
model. It is also possible to consider shifting energy costs, as in [10].
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Towards improving tenders for Higher Education timetabling software

“Uncovering the selection criteria of HEIs when choosing timetabling
applications, using ERP as a reference”

Rudy Oude Vrielink ¢ Erik Jansen « Ewout Gort  Jos van Hillegersberg ¢« Erwin Hans

Abstract Higher Education Institutions (HEIs) are under constant competitive pressure,
resulting in the increased importance of achieving both efficiency and effectiveness in such
organizations. This intensifies the importance of selecting a suitable timetabling software
application, which can be considered to be at the heart of the organization, as it supports
organizing the primary process. The timetable software regulates the scheduling of teachers,
students and staff, and thus significantly impacts on their effectiveness and efficiency. The
selection of such an important application is an essential first step for managing and controlling
the schedules.
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The contribution of this paper is threefold. First, we decide on a method for comparing
the criteria found in tenders to software selection theory. We select and analyze an existing
model for selecting ERP software from the literature. Second, we evaluate public tenders
submitted in several northwest European countries from 2003 to 2016 and demonstrate that HEIs
use a varied and incomplete set of tender criteria. Third, we apply the ERP software selection
model to the selection criteria of timetabling applications in HEIs. We present and discuss the
model as the approach for HEIs to select timetabling applications in a more structured and
consistent way, intended to lead ultimately to use resources more effectively and efficiently.

Keywords Higher education, timetabling, public tenders, selection criteria, ERP

1 Introduction

Timetabling applications are essential for HEIs to control the effective and efficient deployment
of teachers, staff and other resources (SURF, 2014), as HEIs are in a constant race to lower costs
while attracting more students at both the national and international levels (Jacob, 2015). This
results in an increasing demand for flexibility, meaning more student- or individual-centered
timetabling practices (Cook-Sather, Bovill, & Felten, 2014) (Oude Vrielink, Schepers, & Jansen,
2016). Selecting a suitable timetabling application that maximizes the efficiency and
effectiveness of a HEI is therefore critical.

Timetabling applications are concerned with “the allocation of resources to specific objects
being placed in space and time, in such a way as to satisfy as nearly as possible a set of desirable
objectives, subjected to constraints” (Wren, 1996). A timetable is not acceptable when any hard
constraint is violated, whereas it is considered feasible when no hard constraint, but only some
of the soft constraints are violated, which is usually the case. Timetabling tries to approximate
optimal solutions as it is an NP hard problem (Moura & Scaraficci, 2010) (Bettenelli, Cacchiani,
Roberti, & et al., 2015), meaning that for large instances only feasible rather than optimal
solutions can be found in limited time. Three categories of university timetabling can be
distinguished: Examination Timetabling, Post-Enrolment-Based Course Timetabling and
Curriculum-Based Course Timetabling (Second International Timetabling Competition, 2007)
(Di Gaspero, McCollum, & Schaerf, 2007). We consider software applications dealing with one
or more of these categories to be timetabling software applications.

HEIs regularly re-evaluate their current timetabling software and make a decision on
whether they should keep it as-is, modify it or replace it. A public tender must be issued when
the decision is made to acquire a new application and the value of the contract exceeds the
threshold that is laid down in EU regulations. This threshold was €209,000 in 2016 for the total
costs of purchase, implementation, maintenance and other additional costs, combined over a
time period of 5 years (Europa.eu, 2016). This means that HEIs will generally have to issue a
tender when acquiring new timetabling software. At the end of such a tender process, the contract
is awarded to the vendor who best meets the requirements set out in the tender.

This paper first surveys the literature on selecting timetabling software applications for HElIs.
Second, a suitable model is proposed incorporating criteria for selecting timetabling software
applications. For this purpose, we analysed ERP theory, as timetabling is considered to be a form
of an ERP process (Rabaa'i, Bandara, & Gable, 2009), and, where in contrast with timetabling
theory and practices, there is an extensive knowledge base. Third, this paper examines the
currently used selection criteria by HEIs in selecting timetabling software applications and
compares these criteria to the theoretical model. Finally, we demonstrate that the model is
applicable when combining the findings from literature and looking at practical relevance. We
propose that applying this specific ERP model in the selection process of timetabling
applications is a good step towards improving timetabling application selection and
consequently towards improving the competitiveness of the HEI as a whole. This results in the
following research question:
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What can be learnt about current practices in timetabling application selection issued by
HEIs, when comparing tenders to ERP system selection theory?
To find answers to this question, we search for answers to the following sub-questions:
« What model for tendering ERP software can also apply to tendering timetabling software?
- To what extent are selection criteria used by HEIls in tenders similar, when selecting a
timetabling application?
» To what extent does ERP theory capture timetabling tender criteria in HEIs?
Figure 1 shows the roadmap of the research process to help improve the tenders for timetabling
software.

How to improwve the
timetabling software tender
process?

v +

Theory Practice

Find suitable ERP
model for
timetabling
software tenders

+ +

Find timetabling
tenders selection
criteria in use

Derive selection Derive selection
criteria from ERP criteria from
theory practices

Compare
practices and
practice to theory

!

New best practice
funded in ERP
theory

Figure 1 Roadmap of research process to improve tenders for timetabling software in HEIs

Section 2 discusses the literature about timetabling in higher education. Section 3 addresses the
selection of a suitable ERP model for evaluating public tenders. Section 4 gives an outline of all
the selection criteria used by HEIs in their tendering processes when selecting a timetabling
application and compares them to each other. Section 5 analyzes these selection criteria by
comparing them to ERP theory. All selection criteria set out in the tenders are compared to
determine to what extent the ERP theory matches these criteria. In the final section, we present
our conclusions and recommend further research.

2 Literature

Searching in Google Scholar, Web of Science and in Scopus reveals that little research has yet
been performed on the subject of the selection process for timetabling software applications for
HEIls. We used the following search query to search for papers and other theory on software
selection in higher education in the areas of computer science, business, decision support or
economics:
TITLE-ABS-KEY ("Software Selection™ AND "Higher Education™) AND ( LIMIT-TO (
SUBJAREA,"COMP ") OR LIMIT-TO ( SUBJAREA,"BUSI ") OR LIMIT-TO (
SUBJAREA,"DECI ") OR LIMIT-TO ( SUBJAREA,"ECON "))
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Figure 2 shows that there are only a very small, but increasing, number of papers
concerning the selection process of timetabling software in HEIs. We also found that these
papers are only occasionally cited and, perhaps for that reason, they are limited in their relevance.
For instance, one paper is concerned with the comparison of two implementations of SAP R/3
scheduling modules, which does not provide any scientific grounding for improving the
tendering process. Furthermore, we searched for articles that cover the selection of software
within the higher education sector, which limits the number of results but increases the relevance
of the search results.

Count of papers
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Figure 2 Count of papers found on the selection process of timetabling software in HE

Enterprise resources planning (ERP) has its roots in the field of manufacturing
resources planning, but has come to have a more central position and influence on the enterprise-
wide operations of an organization (Chen, 2001). Timetabling is considered to be a subset of
ERP (Rabaa'i, Bandara, & Gable, 2009). Even though timetabling is only a part of the much
wider field of ERP, both ERP and timetabling systems are central systems that greatly influence
almost all aspects of an organization. However, the field of ERP research is a much more mature
field of research than the field of timetabling in HEIs, and can therefore be used as a reference
to evaluate the tenders collected from HEIs. Better insight into the selection criteria used by
HEIs in selecting timetabling applications and evaluating the process, can be achieved in a
systematic way by comparing ERP system selection with the actual tenders for selecting
timetabling software applications.

3 Selection of an ERP model for timetabling software tenders

We used the literature from the field of ERP to establish the model as there are, to the best of
our knowledge, no theoretical models of this kind in the specific field of selecting timetabling
software. However, in the ERP literature there is a high number of models for selecting software
systems, based on scientific research. We compared ERP software selection models with each
other in order to find an established model consisting of a set of useful selection criteria and also
influencing system selection when considering the weight of the key criteria. Figure 3 shows the
outline of the search for potentially relevant ERP theories. The search with only the first three
criteria led to 40 relevant papers, and we found that most models are based on earlier models.
Of these, one paper is by far the most cited, is considered well-established and uses weighted
selection criteria for system selection applicable in higher education.
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Figure 3 Search process for papers on the selection process of ERP software

This most-relevant model we found is the ERP system selection model proposed by Wei,
Chien and Wang (2005). It covers the selection criteria for ERP system selection used in other
literature such as Van Everdingen, Van Hillegersberg, & Waarts (2000), Verville and Halingten
(2002), Kumar et al. (2003) and Hecht (1997). In the academic search engines Google Scholar,
Scopus and Web of Science, this article is frequently cited on this subject. It is referenced as a
key source for many other papers on ERP and therefore is a useful source from which to further
explore and derive theory for timetabling system selection in HEIs. The paper may seem
outdated because it was published many years ago, but that only strengthens the idea that it is
the original paper with the original theory on ERP system selection, and the basis of many other
papers on this subject.

When selecting software, one could use multi-criteria decision making or multi-criteria
heuristics. Korkonen et al. (1992) wrote an, in our opinion, excellent article that provides a
review of multi-criteria decision support. Wallenius et al. (2008) wrote a follow-up to this article.
We have personally been involved in several tenders and, to the best of our knowledge, HEIs do
not use multi-criteria decision support systems when selecting timetabling software. This
provides further support to our proposal to use the model by Wei et al. (2005) as the best suited
model to evaluate the selection process.

That model consists of two main parts, in which both the system itself and the supplier are
assessed. The first part includes categories of selection criteria for selecting the most suitable
ERP software system for a particular organization, while the second part encompasses categories
of selection criteria for selecting the most suitable ERP vendor for a particular organization. The
model has nine categories of selection criteria, which are taken into account when selecting an
appropriate ERP system, divided into the two main parts system and vendor. The categories of
selection criteria according to Wei et al. (2005) are set out in the table below.

A. Selecting the most appropriate system B. Selecting the best vendor

1. Minimising Total Costs 7. Having Good Reputation
2. Minimising Implementation Time 8. Providing Good Technical Capability
3. Having Complete Functionality 9. Supplying Ongoing Service
4. Having User-Friendly Interface and
Operations

5. Having Excellent System Flexibility
6. Having High System Reliability

These categories have each been given a specific weighting, indicating their relative importance.
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3.1 Most suitable system selection criteria

We first discuss the six categories for selecting the most suitable system.

3.1.1. Minimizing Total Costs

This category of selection criteria encompasses factors contributing to the costs of the system.
The model makes a distinction between (1) price, (2) maintenance costs, (3) infrastructure costs,
and (4) consulting expenses. We consider price to be the direct cost of gaining the right to use
the software. Maintenance costs are considered the costs brought about by repairs and fixes to
keep the system performing as expected, not to be confused with infrastructure costs which are
the costs of the support systems that enable the software to run. Consulting expenses are the
costs of consultancy, mainly during the implementation phase.

3.1.2.  Minimizing Implementation Time

This category includes selection criteria concerned with the implementation time of the system.
It contains criteria related to the (1) planning and (2) implementation timeframe for the system
in the organization.

3.1.3. Having Complete Functionality

This category contains criteria contributing to ensuring complete functionality of the system.
The model makes a distinction between (1) module completeness, (2) function fitness, and (3)
security. Module completeness criteria ensure that the system contains all the modules the HEI
expects it to have. Function fitness ensures that the implementation fits within the current
timetabling process. For instance, the criterion that a system can import student data is therefore
a module completeness criterion, while the criterion that the system should be able to handle at
least 40,000 students is considered to be part of function fitness. The final subcategory of these
selection criteria, namely security, contains criteria which ensure the security of the data held
and produced in the system in terms of both unlawful external access and unlawful internal
access.

3.1.4. Having a User-Friendly Interface and Operations

This category of selection criteria encompasses factors contributing to the user-friendliness of
both the interface and the operations of the system. The model makes a distinction between (1)
ease of operation, and (2) ease of learning. Ease of operation means that operations within the
system can be done in a sufficiently easy and quick manner. Ease of learning means the effort
that users of the system -especially new users- have to put in to learn to use the system.

3.1.5. Having Excellent System Flexibility

This category encompasses all the selection criteria contributing to the flexibility of the system.
The model makes a distinction between (1) ease of integration, (2) upgrade ability and (3) ease
of in-house development. Ease of Integration concerns the connectivity of the system to other
systems already in place. Upgrade Ability deals with the ease of upgrading, such as the ability
to develop and implement upgrades. Ease of In-House development concerns the extent to which
the system can also be upgraded and adapted by the HEI itself.

3.1.6. Having High System Reliability

This category encompasses all the factors contributing to the reliability of the system. The model
makes a distinction between (1) stability, and (2) recovery ability. Stability concerns the
selection criteria ensuring that the system will not stop functioning when faced with unexpected
internal and external influences. This in contrast to recovery ability which concerns the criteria
that will ensure the system is able to recover back to a functioning state after it stopped
functioning.
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3.2 Best vendor selection criteria

Next, we discuss the three categories of selection criteria that involve choosing the most
suitable vendor.

3.2.1. Having Good Reputation

This category of selection criteria encompasses all the factors contributing to the reputation of
the vendor. The model makes a distinction between (1) the scale of the vendor, (2) financial
condition, and (3) market share. Scale of vendor criteria are concerned with the size of the
vendor. Financial condition criteria are concerned with the financial standing of the vendor.
Market share criteria concern the number of other organizations using the system.

3.2.2.  Technical Capability

This category encompasses all the factors contributing to the perceived technical capabilities of
the vendor. The model makes a distinction between (1) research and development ability, (2)
technical support capability, and (3) implementation ability. The ability of the vendor to research
and develop new technologies is classified as a Research and Development criterion. Technical
support capability criteria are concerned with the ability of the vendor to deal with technical
difficulties while implementation ability criteria are concerned with the ability of the vendor to
implement agreed and specified functionality.

3.2.3.  Service

This category encompasses all the factors contributing to the vendor providing ongoing services.
The model makes a distinction between (1) warranties, (2) consultancy services, (3) training
services and (4) service speed. Warranty criteria are concerned with the warranties the vendor
provides in case the system or the implementation process do not meet the promised levels.
Consultancy services cover the criteria ensuring the number of consultants and experience of the
consultants working at the vendor. Criteria concerned with the amount of training time and the
quality of the trainings are bundled into training service criteria. Service speed is concerned with
the required response time of the various services.

4 Selection of tenders used in higher education

This section is concerned with the evaluation of the tenders and grouping the information in
these tenders to find out the selection criteria used in tenders for timetabling software in HE.
First, we searched for suitable tenders. Then, we listed all demands and requirements in these
tenders and grouped them. We searched for similarities and differences used in these actual
tenders from HEIs and compared them to the ERP model to find out to what extent tenders can
be improved by learning from each other and from theory. We considered tenders that comply
with the following three rules:
1. The tender is for a timetabling application (may also be termed a timetabling system)
2. To achieve comparability, the tender is issued by an HEI located in the North-West region
of Europe (i.e. Benelux, Scandinavia, Germany, UK and Ireland)
3. Not only the RFP, but also more explanation in accompanying tender documents are
available.

The tenders were gathered by searching the “online version of the 'Supplement to the Official
Journal' of the EU, dedicated to European public procurement” (TED, n.d.). The selection
criteria were then extracted from the tenders in order to be able to compare them to each other
and analyze them using the ERP selection model.
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4.1 Analysis of the categorized selection criteria

The categorized selection criteria were analyzed to determine to what extent the requirements of
the actual tenders can be labelled employing the criteria of the ERP software selection model,
and, vice versa, to what extent the categories of the ERP software selection model can be found
in the tenders. To achieve this in both directions, means that we maximized the opportunities to
learn from both theory and practice. Possible categories presented in the tenders that are not
present in the ERP software selection model, were found by evaluating the newly created
category ‘Miscellaneous’, which contained selection criteria from tenders that could not
immediately be allocated to an existing category. In addition, the weight of the categories
relative to each other was analyzed and compared to those used in our ERP evaluation model.

5  Analysis of timetabling tenders

Eighteen tenders were collected for this research, from The Netherlands, Belgium, the United
Kingdom, Ireland and Norway, and which were published between 2003 and 2016. The process
of extracting the selection criteria from the tenders was difficult because of the very different
formats and structures of the tenders. It became apparent that they lack consistency and do not
use any kind of general framework.

Figure 4 Map of the origin and the number of tenders found on timetabling in HEIs

5.1 Cleaning the data

A first indicator for the quality of a tender is the number of categories of selection criteria it
addresses. Figure 5 shows how many tenders addressed how many categories. Of the tenders
evaluated, one outlier only addressed two categories. The remaining 17 tenders addressed on
average 7.4 of the 9 categories from the model, ranging from 5 up to the full 9 out of 9 categories.
The outlier is therefore eliminated from the dataset as we suspect there is incomplete
documentation. The remaining dataset consisting of 2,190 selection criteria was divided into the
9 different selection categories from the ERP model, and 46 selection criteria did not fit in any
of these categories and were thus classified as ‘Miscellaneous’. This accounts for an average of
132 selection criteria per tender for a total of 17 usable tenders.
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Figure 5 Count of tenders sorted by how many categories they address

After the criteria from the tenders were classified, a closer look was taken at the criteria that
were left in the category ‘Miscellaneous’. Although roughly 76% of the tenders have one or
more selection criteria that were labelled Miscellaneous, this category only contains 46 of the
2,190 selection criteria in total, which makes this category marginal (2.1%). As almost all criteria
could be related to existing tender categories in the model, there is no need for new categories
of system selection. This suggests that current practices of tendering for timetabling software in
HEIs do not use other selection criteria or categories not yet known to the ERP system selection
theory proposed by Wei et al. (2005).

5.2 Count of categories addressed per tender

Figure 6 shows the tender and the ERP categories. All tenders have selection criteria in the
Flexibility, Functionality and User-Friendliness categories. The Reliability category is similar
to these categories with 94% of the tenders having selection criteria in this category. After these
four categories, a large drop is seen in the number of categories that the tenders include. These
first four categories combined are therefore considered to be a consistent part of timetabling
software selection tenders in practice.

Criteria in the Service and Reputation categories are mentioned in 82% of the tenders, and
criteria in the Technical Capability and Costs categories are mentioned in 76% of the tenders.
Most tenders thus have selection criteria in these categories, although a notable number of
tenders do not. This suggests that these tenders could have been improved by adding selection
criteria in these not-yet-covered categories. It is remarkable to find 24% of the tenders not
addressing total costs.

The least number of tenders, at 59%, contained selection criteria from the Implementation
Time category. Thus, of all the 9 categories, adding criteria concerning the implementation time
seems to offer the most potential for the improvement of future tenders.
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Figure 6 Percentage of tenders from HEIs addressing ERP software selection criteria

5.3 Determination of the relative importance of the selection criteria

Weights to determine the relative importance of criteria were not defined in the tenders we found.
This, to us, is a mayor improvement point for tenders. For the analysis, we had to find a way to
differentiate in terms of importance between the various selection criteria in tenders from HElIs.
We assume that the difference in the number of selection criteria between categories can be seen
as an indicator for their relative weight. This assumption is based on the idea that elements with
a higher importance are mentioned more often, either because the same criteria are mentioned
several times in different parts of the tender, or because the criteria in a category are of a higher
detail resulting in more criteria in the same category. Either way, more importance for a criterion
leads to it being mentioned more often in the tender, meaning more weight is given to it. With
this in mind, a comparison can be made between the weight of categories given in public tenders
and the weight of categories as given in the ERP model. This results in Figures 7 and 8, where
Figure 7 shows the comparison between the weight of the system selection criteria between the
ERP model and the tenders found, and Figure 8 shows the same for the vendor selection criteria.

As most notable differences, we can identify those where the relative count of criteria is
less than half or more than double the weight given by the ERP model. For the system selection,
these are System Flexibility (5 vs 19%), Implementation Time (15 vs 2%), System Reliability
(24 vs 7%) and User-Friendly Interface and Operations (called: User Friendliness) (4 vs 8%).
System Flexibility and User-Friendliness are considered to be less important by the ERP model
than they are valued in tenders for timetabling software issued by HEIs. On the other hand,
Implementation Time and System Reliability are valued as more important by the ERP model
than by tenders for timetabling software issued by HEIs.
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Figure 7 The weights of system selection criteria categories compared between model and practice

This means that, according to the model proposed by Wei et al., the practice of these
tenders could be improved by giving more attention to implementation time and system
reliability, and perhaps less to system flexibility and a user-friendly interface and operations.
Figure 8 shows the comparison between the weight of the vendor selection criteria between the
ERP model and the selected tenders.
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Figure 8 The weights of vendor selection criteria categories compared between model and practice

Good Reputation and Good Technical Capability are the most notable criteria
categories in the vendor selection factors. Good Reputation is valued as less important by the
ERP model than it is valued by tenders for timetabling software issued by HEIs. However, Good
Technical Capability is valued as more important by the ERP model than by tenders for
timetabling software issued by HEIs. This means that in tenders, HEIs focus more on reputation
than on the technical capability of the supplier, as compared to the ERP theory.

5.4 Weight of the subcategories

Figure 9 shows the sub-criteria for all the nine categories. The category Costs consists of the
sub-criteria Consultancy, Infrastructure, Maintenance, Price, and Miscellaneous. Infrastructure
criteria are a negligible part of costs criteria in tenders. Price criteria are most frequently
mentioned and make 36% of the Total Costs criteria. The Consultancy, Maintenance and
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Miscellaneous subcategories each form about 20%. The fact that the sub-criterion
‘Miscellaneous’ is still as large as it is, suggests that there are missing subcategories within the
Costs category. The Implementation Time category was excluded from further analysis, as the
ERP model does not provide sub-categories for it.

The System Flexibility category consists of Ease of In-house Development, Ease of
Integration, Upgrade ability and Miscellaneous. Sub-criterion Ease of integration is by far the
largest subcategory, accounting for 76% of the Flexibility criteria. This indicates that this
subcategory might be usefully split up, giving room for more detail in this category when HEIs
are tendering for timetabling software.

The remainder of the System flexibility sub-criteria are equally spread accounting for about
8% each. This is a low number which could be the result of the Integration subcategory being
too large, but could also indicate that these sub-criteria should be widened and be made more
general.

The System Reliability category consists of the Recovery Ability, Stability, and

Miscellaneous labels. These subcategories are all fairly evenly distributed. The Miscellaneous
subcategory could indicate a need for new subcategories that are currently missing.
The Reputation category consists of the Financial condition, Market share, Scale of vendor and
Miscellaneous labels. Financial condition and Market share make up 23% and 22% respectively
of the criteria in the Reputation category. Scale of vendor is a smaller subcategory accounting
for 14%. However, the Miscellaneous category contributes 41% of the Reputation criteria,
indicating that there may be sub-categories missing.
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Figure 9 Relative weight of sub-category criteria per category

The Ongoing Service category consists of the Consultant Services, Training Service,
Warranties and Miscellaneous labels. By far the biggest subcategory in the Service category is
Consultant Services at 49%. This is a good indication that this subcategory can be split up. The
Speed of Service, Training Services and Warranties subcategories each account for about 11%.
The Miscellaneous category accounts for 17% of the Service category. This also indicates
possible missing subcategories.

The Good Technical Capability vendor selection category consists of the Implementation
Capability, Research and Development, Technical Support and Miscellaneous labels.
Implementation Capability and Research and Development account for 40% and 29%
respectively of the selection criteria. Technical Support accounts for only 9%, making it the
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smallest subcategory. The Miscellaneous category accounts for 22% of the criteria, indicating a
possible missing subcategory.

The User Friendliness, or “Having User Friendly Interface and Operations” category,
consists of the Ease of Learning, Ease of Operation and Miscellaneous labels. Ease of operation
accounts for 92%, by far the biggest subcategory of User Friendliness, which indicates that this
subcategory can be more nuanced by splitting it up into more detailed subcategories concerning
ease of operations. Ease of Learning and Miscellaneous both account for 4% of the User
Friendliness criteria.

6  Conclusions and discussions

Analyzing the data produced several findings that can be summarized in the following five

points:

1. The ERP system selection model proposed by Wei et al. (2005) provides a suitable reference
for current tenders for timetabling software in higher education, as no new categories of
selection criteria were needed to label the selection criteria found in the tenders evaluated.
Tenders evaluated address on average 7.4 of the 9 categories provided by the ERP software
selection model.

2. The Flexibility, Functionality, User Friendliness and Reliability selection criteria can be
found in all selected tenders, while Reputation, Service, Technical Capability and Costs
selection criteria are found in considerably fewer tenders, at about 80%. The Implementation
Time selection criteria are found in the least number of tenders, at about 60%.

3. The tenders put more weight on the Flexibility and User Friendliness system categories, and
on the Reputation vendor category than Wei’s model for ERP system selection does.

4. The tenders put less weight on the Implementation Time and Reliability system categories
and on the Technical Capability vendor category than Wei’s model does.

5. Wei’s ERP model provides a set of subcategories for each category to be used in evaluating
systems. Several of these subcategories are probably too general, namely: Flexibility-
integration, Service-consultant service and User Friendliness-Ease of Operation. Some
subcategories were found to be too narrow in definition, namely: Costs-Infrastructure and
User Friendliness-Ease of Learning. Also, indications were found for several categories
where subcategories are missing, namely: Costs, Flexibility, Reliability, Reputation, Service
and Technical Capability.

Overall, the tenders seemed to be of a reasonable level of completeness, with several
categories of selection criteria identifiable in all the analyzed tenders. However, there are several
categories of selection criteria which are not yet optimally integrated in current timetabling
application tenders. The Implementation Time category provides the biggest opportunity for
improvement. The system categories were identified in descending order of the number of
tenders in which they have appeared: Flexibility and Functionality and User Friendliness,
Reliability, Costs and Implementation Time. Subsequently, the vendor categories were
identified in descending order of the number of tenders in which they appeared: Service and
Reputation and Technical Capability.

Timetabling application tenders issued by HEIs seem to have a higher interest in the
flexibility of the system and reputation of the vendor than would be expected from the ERP
literature. The high need for flexibility can possibly be explained by the fact that the timetabling
application often is one of the core systems in an HEI and that the system is often linked to
multiple databases and portals. However, reputation is a category for which its higher weight is
more difficult to explain. Timetabling tenders by HEIs seem to have less interest in the
implementation time, and the reliability of the system and the technical capability of the vendor
than would be expected from the ERP literature. The low importance placed on implementation
time could be caused by the nature of the category, as often only a few criteria are needed to
cover its domain. However, this raises the question of whether implementation time deserves to
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be a category on its own. The apparent low interest in reliability and technical capability of the
vendor is surprising, and cannot easily be explained. This probably indicates an opportunity for
the improvement of HEI timetabling application tenders.

This paper aimed to provide insight in the selection criteria used by HEIls to select
timetabling applications. This can be the first step in improving this selection process, leading
to a better understanding of ways to control effectiveness and efficiency in education. The paper
identified the various categories of selection criteria appearing in public tenders for timetabling
applications in HEIs located in North-Western Europe. This was done by comparing these
tenders with a well-established and well-regarded ERP software selection model. This paper also
provided some further insight into the relative weights given to the categories. Finally, a first
critical view of possible subcategories was made.

7 Further research

Possible additional subcategories were discussed in the conclusion and discussion. Further
labelling of the dataset could provide a more thorough insight in the subcategories specific to
tenders for timetabling application by HEIs. When comparing the tenders that were researched,
we found large differences between them. A generally accepted framework seems to be missing,
which would provide a great opportunity to increase the efficiency and effectiveness of the
timetabling application tender processes within HEIs. A framework encompassing all the
various aspects of the tendering processes, including the selection criteria, should be established.
The findings of this paper can be a good starting point for such a framework.

Further steps for future research would be first to collect more tenders from other countries
to facilitate a more accurate analysis. Second, tenders from other parts of the world, such as
North-America, Australia and New Zealand, would have to be looked at to see differences in
tendering between countries in different parts of the world. Third, a close look at which supplier
actually won which tender would be helpful for further analysis. Conclusions can be drawn from
the outcomes of the tendering process, and the contents and quality of winning tenders.
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Scheduling Models for Multi-Agent Path Finding

Roman Bartdk - Jiff Svancara - Marek V1k

Abstract Multi-agent path finding (MAPF) deals with the problem of finding a colli-
sion free path for a set of agents. The agents are located at nodes of a directed graph,
they can move over the arcs, and each agent has its own destination node. It is not
possible for two agents to be at the same node at the same time. This paper suggests
to model the MAPF problem using scheduling techniques, namely, nodes are seen as
unary resources. We present three models of the problem. One model is motivated by
network flows, another model uses classical unary resource constraints together with
path constraints, and the last model works with optional activities. We compare the
efficiency of models experimentally.

1 Introduction

There exist numerous practical situations, where a set of agents is moving in a shared
environment, each agent having its own destination. For example, traffic junctions and
large warehouses are typical examples of congested environments, where agents are
moving between locations while sharing paths. In the era of autonomous systems, it is
important to have efficient solutions for coordinating such agents.

The above problem is known as multi-agent path finding (MAPF) or cooperative
path finding (CPF) [8]. The problem can be formalized as a (directed) graph, where
agents are initially distributed at some nodes, each agent having a destination node
to reach, and the task is to find a plan of movements for each agent to reach the
destination node while not being at the same node as another agent at the same time.
A frequent abstraction assumes that agents are moving synchronously and distances
between the nodes are identical. Then, at each time step, each agent either moves to a
neighboring node or stays in the current node. Grid worlds (such as the famous Lloyd
15-puzzle) are satisfying this assumption. This model makes it natural to use solving
techniques based on Boolean satisfiability or state-space search, which are currently
two leading approaches to solve MAPF. On the other hand, such an abstraction might
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be too restrictive as distances between the nodes might be important (and different)
in some practical applications.

In this paper, we suggest models of MAPF that borrow ideas from scheduling and
routing problems. We see the nodes (and possibly also the arcs) as resources with
limited capacity, which is one in this particular setting but could be larger in future
applications. We model the movements of agents using various techniques, namely
as network flows, as paths, and as optional activities. The motivation is supporting
richer (in comparison to traditional MAPF') temporal and capacity constraints, which
makes the models closer to reality. On the other side, there is one extra restriction
of our current models with respect to traditional MAPF formulation - the models are
designed such that no agent visits the same node more than once.

2 Background on Multi-Agent Path Finding

The MAPF problem is formulated by a graph and a set of packages (agents) sitting at
certain nodes. The task is to transport packages to their destination nodes — each pack-
age moves itself — while satisfying some capacity constraints, namely no two packages
meet at the same node at the same time. The difference from usual MAPF definition
is that in the rest of the paper, we will also assume that no package enters any node
more than once.

Let G = (V, E,w) be a directed arc-weighted graph and P be a set of packages.
The weight w(a) indicates the duration of moving a package over the arc a. In many
MAPF formulations, this duration is expected to be one. For each package p we denote
orig(p) € V the original location (node) of the package and dest(p) € V its destination
node. Let InArcs(z) be the set of incoming arcs to  and OutArcs(z) be the set of
outgoing arcs from x. Formally,

InAres(z) = {(y,z) | (y,7) € E},
OutArcs(z) = {(z,y) | (z,y) € E}

The solution for MAPF problem as described above is a sequence of positions in
time for each package that satisfies the condition that no two packages are at the same
node at the same time. In this paper, we will focus on solutions that are makespan
optimal — the total time until the last package reaches its destination is minimized.

The classical MAPF is usually solved by algorithms that can be divided into two
categories:

1. Reduction based solvers. Many solvers reduce MAPF to another known problem
such as SAT [10], inductive logic programming [12] and answer set programming
[3]. These approaches are based on fast solvers that work very well with unit cost
parameters.

2. Search-based solvers. On the other hand, many recent solvers are search-based.
Some are variants of A* over a global search space — all possibilities how to place
agents into the nodes of the graph [9]. Other make use of novel search trees [7,2,
6].

-190 -



8th Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2017)
5-8 December 2017, Kuala Lumpur, Malaysia

3 Flow Model

The Flow model is motivated by the model for the closely related problem of multiple-
origin multiple-destination problem [1]. The model consists of two parts, a logical one
and a numerical one. The logical part describes a valid path for each package using the
idea of network flows. The numerical part describes temporal and resource constraints,
namely that paths for different packages do not overlap in time and space.

3.1 The Logical Part (Modeling Paths)

For each package p € P and for each arc a € E we introduce a Boolean decision variable
Used]a, p] that indicates whether or not arc a is used to transport package p. For each
package p € P and for each vertex z € V a Boolean variable Flow|z, p] indicates
whether or not the transport of package p goes through the vertex x.

To model a transport path for a package we specify the flow preservation con-
straints. These constraints describe that each package must leave its origin and must
arrive at its destination, and if the package goes through some vertex then it must en-
ter the vertex and leave it (both exactly once). In the case of origin, the package only
leaves it and, similarly, in the case of destination, the package only enters it. Formally,
for each package p € P we introduce the following flow preservation constraints (recall
that domains of all the variables are Boolean, that is, {0,1}):

Va € InArcs(orig(p)) : Used[a,p] =0 (1)

Va € OutArcs(dest(p)) : Used[a,p] =0 (2)

Flow[orig(p), p] = (3)

Flow[dest(p), p] = (4)

Ve € V\ {orig(p)} : Z Used|a, p] = Flow[z, p| (5)
a€lInArcs(x)

Vo € V\ {dest(p)} : Z Used|a, p] = Flow[z, p] (6)
a€ OutArcs(z)

3.2 The Numerical Part (Modeling Nodes as Resources)

The numerical part specifies non-overlapping constraints, namely two packages do not
meet at the same node at the same time, and travel time between the nodes that is
expressed by weights of arcs. To model the time interval when a package p € P stays in
anode z € V, we introduce two numerical variables InT'[z, p] and OutT |z, p] modeling
the time when the package enters the node and when it leaves the node respectively.
We can describe the travel time of package p between the nodes x and y through the
arc a as follows:

Used|a,p] = OutT[z,p] + w(a) = InTy, p]. (7

If the package p is going through the node x then the package cannot enter the node
before it leaves it:

InT|z, p] < OutT|z, p)]. (8)
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Let sp(x,y) be the length of the shortest path from node x to node y. Then we can
calculate bounds of the time variables as follows:

Ve € V \{orig(p)} : Flow[z,p] = OutT|[orig(p), p] + sp(orig(p),z) < InT[z,p] (9)
Vz € V \ {dest(p)} : Flow|z, p] = OutT|[z, p] + sp(x, dest(p)) < InT[dest(p), p] (10)

Let MKSP be the time when each package must be in its destination - it corresponds
to makespan of the schedule. Then we set the times in package’s origin and destination
as follows:

InT[orig(p),p] = 0 (11)
OutT[dest(p), p] = MKSP (12)

Finally, to model that two packages p; and ps do not meet at the same node x, we
need to specify that their times of visit do not overlap:

(Flow[z,p;1] A Flow[z, p2]) = (OutT[z,p1] < InT[z, p2] V OutT[z,p2] < InT[z,py1])
(13)

3.3 Model Soundness

It is easy to prove that the Flow model is sound, that is, every consistent instantiation
of variables defines a solution to the MAPF problem. The constraints (1)-(6) define a
single path from origin to destination for each package, i.e., the variables Flow and Used
are equal to one for nodes and arcs used on the path and equal to zero for all other nodes
and arcs. The origin and destination must be on the path due to constraints (3) and
(4). The path must continue from origin due to (6) and must reach the destination due
to (5). The path cannot start and cannot finish in any other node due to constraints
(5) and (6). The flow constraints allow a loop to be formed in the graph, but such
loops are forbidden by temporal constraints (7) and (8). Each package starts its tour
at time zero (11) and finishes at time MKSP (12) and two packages cannot meet at the
same node at the same time due to constraint (13). Hence each solution to the above
constraint satisfaction problem defines conflict free paths for all packages.

4 Path Model

The disjunctive non-overlap constraint (13) from the Flow model is a classical expres-
sion of a unary (disjunctive) resource. In constraint programming, these disjunctive
constraints are known to propagate badly and special global constraints modeling re-
sources have been proposed [11]. Hence it seems natural to exploit such constraints in
a model, where the presence of a package at a node is modeled as an activity. These
activities must be connected via temporal constraint to define a path from origin to
destination.

Formally, for each package p € P and each node x € V, we introduce an ac-
tivity N[z, p] describing time that the package p spends in the node z. We denote
StartO f(N[z,p]) the start time of the activity - it corresponds to InT'[z,p] in the
Flow model - and similarly EndO f(N[z,p]) denotes the end time of activity corre-
sponding to OutT[z, p] in the Flow model. The start time of activity corresponding to
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the origin of the package is set to zero, while the end time of activity corresponding to
the destination of the package is set to MKSP, which is the makespan of the schedule:

StartOf (N[orig(p), p]) = 0 (14)
EndOf(N|[dest(p), p]) = MKSP. (15)

4.1 The Path Part

To model the path from origin to destination, we will use a double-link model describing
predecessors and successors of activities. The real path will be completed to form a
loop by assuming that the origin directly follows the destination. The activities (nodes)
that are not used in the path will form self-loops (the node will be its own predecessor
and successor).

Formally, for each package p € P and for each node z € V' we will use two variables
Prev[z,p] and Next[z,p] describing the predecessor and successor of node z on the
path of package p. The domain of the variable Prev[z,p] consists of all nodes y such
that (y,z) € E plus the node z. Similarly, the domain of variable Next[x,p] consists
of nodes z such that (z,z) € E plus the node z. To ensure that the variables are
instantiated consistently, we introduce the constraint:

Prev[z,p] = y & Nextly, p] = z. (16)
To close the loop, we will use the following constraints:

Prev]orig(p), p] = dest(p) a7
Nezt[dest(p), p] = orig(p). (18)

It remains to connect information about the path with the activities over the path,
namely to properly connect times of the activities so they are ordered correctly in time.
This will be realized by the constraint:

EndOf (N [z, p]) + w(z, Next[z, p]) = StartOf (N [Neat|[z, p], p]), (19)

where w(z,y) is the length of arc from = to y. We set

w(z,z) =—1 (20)
w(dest(p), orig(p)) = —MKSP. (21)

In order to prune the search space, we add for all z € V \ {orig(p)} the following
constraints:

Next[z,p] # x = EndOf(NJorig(p), p]) + sp(orig(p), z) < StartOf (N[z,p]), (22)
and for all z € V' \ {dest(p)}, we add:

Nezt[z, p] # & = EndOf(N[z, p]) + sp(z, dest(p)) < StartOf (N[dest(p),p]). (23)
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4.2 The Resource Part

For each node x € V', we add the following constraint encoding that the visits of the
node x are not overlapping:

NoOverlap( U Nz, p]). (24)
peEP

4.3 Model Soundness

Any solution to the Path constraint model defines a solution of the MAPF problem and
vice versa. For each package, each node (activity) has some predecessor and successor
and they are defined consistently thanks to constraint (16), i.e., if x is a predecessor
of y then y is the successor of x. It means that all nodes of the graph are covered by
loops. Moreover, the origin and destination nodes are part of the same loop due to
constraints (17) and (18). All other loops must be of length one due to constraints (19)
and (20). Note that durations of activities are only restricted to be positive numbers
and as regular arcs also have positive lengths, the only way to satisfy the constraints
(19) over the loop is to include an arc with a negative length. Only the arcs (z,z)
and (dest(p), orig(p)) have negative lengths as specified in constraints (20) and (21).
Finally, each path starts at time zero (14) and finishes at time MKSP (15) and no
two paths overlap at any node at any time due to constraint (24). Note that activities
that are not used at any path (they are part of loops of length one) are still allocated
to unary resource modeling the node. The duration of such activities is one due to
constraints (19) and (20). However, as their start and end times are not restricted by
bounds 0 and MKSP, such activities can be shifted to future (after MKSP).

5 Opt Model

The Path model uses classical activities. Some of them are used on the packages’ paths
from origins to destinations, while others are not necessary (those that are part of
loops of length one). These are dummy activities that are part of the model as we do
not know in advance which activities will be necessary (which nodes will be visited).
In scheduling there exists a concept of optional activities that is used to model exactly
the same problem. We will exploit optional activities in the Opt model. Now, unlike
in the Path model, we do not use variables Next and Prev in order to find the path,
but the succeeding and preceding nodes will be entailed by whether or not an activity
corresponding to the arc and the package is present. All the activities in this model
are optional.

Formally, for each package p € P and each node x € V, we introduce three optional
activities N[z, p], N°%[z,p], and N[z, p]. As in the Path model, the activity N[z, p]
corresponds to the time of a package p spent at node x. The activities N in [, p] and
Nout [z, p] describe the time spent in the incoming and outgoing arcs. Next, for each
package p € P and each arc (z,y) € E, we introduce an optional activity A[z,y, p|.
Again, we use an integer variable MKSP to denote the end of schedule (makespan).
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5.1 The Path Part

The idea is that the path of a package corresponds to the activities that are present
in the solution and that in turn correspond to the nodes and arcs in the path. In
the terminology of hierarchical scheduling, it can be conceived such that each activity
N°“[g p] has the activities A[z, y, p] corresponding to the arcs outgoing from the node
x as its children, and symmetrically, N** [z, p] has the activities Ay, z, p] corresponding
to the arcs incoming to the node = as its children. Hence each activity A[z,y,p] has
two parents: N°%“[z,p] and N"[y,p| as the arc (z,y) is an outgoing arc for node z
and an incoming arc for node y.

Formally, for each package p € P, the following logical constraints are introduced:

PresenceOf (Norig(p), p]) = 1 (25)

PresenceOf (N|dest(p), p]) = 1 (26)

PresenceOf (N [orig(p), p]) = 0 (27)

PresenceOf (N °* [dest(p), p]) =0 (28)

Vz € V \ {orig(p)} : PresenceOf (N|z,p]) < PresenceOf (N [z, p]) (29)

Vz € V \ {dest(p)} : PresenceOf (N[z, p]) < PresenceOf (N°“'[z, p]) (30)

Vz € V\{orig(p)} : Alternatwe(Nm [z, p], U Aly, z, p]) (31)
(y,z)EE

Vz € V\ {dest(p)} : Alternative(N°“'[z,p], ] Alz,y,p])  (32)
(z,y)EE

The constraint Alternative enforces that if the activity given as the first argument
is present, then exactly one activity from the set of activities given as the second
argument is present. In addition, it ensures that the start and end times of the present
activities are equivalent. Since this implication goes only in one direction, we have to
impose the following constraints in order to find the path:

V(z,y) € E : PresenceOf (Alz,y, p]) = PresenceOf (N [y, p]) (33)
Y(z,y) € E : PresenceOf (Alz, y, p]) = PresenceOf (N [z, p]) (34)

The processing times of activities Alx,y,p] are fixed to the weights of the arcs w(z,y),

whereas the processing times of activities N, N°“ and N are to be found. Thanks to

the Alternative constraints, the processing times of activities N°* and N will span

over the child activity A that will be present, and for the rest, the following constraints
need to be added:

Vo € V \ {orig(p)} : StartOf (N|z, p]) = EndOf (N"[z, p])

Ve € V\ {dest(p)} : EndOf(N|z,p]) = StartOf (N°“[z, p])

StartOf (N[orig(p), p]) = 0

EndOf (N|dest(p), p]) = MKSP

Again, in order to prune the search space, we add the following constraints:

Vz € V \ {orig(p)} : EndOf(Nlorig(p), p]) + sp(orig(p),z) < StartOf (N[z, p]) (39)
Vo € V \ {dest(p)} : EndOf(N|z, p]) + sp(z, dest(p)) < StartOf (N[dest(p), p]) (40)
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5.2 The Resource Part

Exactly as in the Path model, we need to introduce the constraint precluding the
packages from occurring at the same node at the same time, that is, for each node
xz €V, we add:

NoOwerlap( U Nz, p]) (41)
peEP

5.3 Model Soundness

The solution of the Opt constraint model consists of selection of activities and their
time allocation. The activities corresponding to origins and destinations of packages
must be selected due to constraints (25) and (26). The constraints (29)-(34) ensure
that if a node is used on some path then there must be exactly one incoming and
one outgoing arc selected (except for the origin, where no incoming arc is used due
to (27), and for the destination where no outgoing arc is selected due to (28)). No
activity outside the path is selected as such activities would have to form a loop due to
constraints (29)-(34), but that would violate the temporal constraints (35) and (36).
Finally, each path starts at time zero (37) and finishes at time MKSP (38) and activities
in nodes are not overlapping (41).

6 Experimental Results

We implemented the models in the IBM CP Optimizer version 12.7.1 [5]. The only
parameters that we adjusted are DefaultInferenceLevel, which was set to Extended,
and Workers, which we set to 1. The experiments were run on a Dell PC with an
Intel® Core™ i7-4610M processor running at 3.00 GHz with 16 GB of RAM. We use
a cutoff time of 100 seconds per problem instance.

6.1 Implementation Details

For all three models, we compute the all-pairs-shortest-path matrix sp using the Floyd-
Warshall algorithm [4] as the preprocessing phase. We set the lower bound on makespan
to be the longest path of the packages’ shortest paths from their origins to their des-
tinations, and the upper bound on makespan UB is set to be the sum of the shortest
paths from the origins to the destinations of all the packages. Further, if for a package
p € P and a node z € V, sp(orig(p),x) > UB, it means that the node x cannot be
passed through by the package p, and thus we omit creating variables associated with
the node = and the package p.

To represent the activities in the Path model and the Opt model, we use the Interval
Variables of the CP Optimizer, which are tailored for the scheduling problems and
support specialized constraints such as Alternative and NoOverlap. The only issue is
that the NoOverlap constraint works with non-strict inequalities, whereas if a package
leaves a node at time ¢, another package is allowed to enter the same node no sooner
than at time ¢ + 1. In fact, the times spent by packages at nodes are mostly zero-
length. Hence, the NoOverlap constraint is given a so-called Transition Distance matrix
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containing all ones, which ensures that the time distances between two consecutive
visits of a node are at least one. Consequently, instead of constraint (20) in the Path
model, we set w(z,z) = 0, and as we omit the constraints (19) between the nodes
dest(p) and orig(p), the constraints (21) can be also omitted.

The bounds of the intervals and other time variables are limited using the sp matrix.
Note that in the Path model, all the intervals must be scheduled and non-overlapping
even when the package is not passing through the associated node, so that we use the
time upper bound UB + |P)|.

As to the implementation of the constraints (19) in the Path model, one option is
to use the specialized Element constraint. Another option is to use constraints in the
form of implications for each possible value of Next[z, p]:

Next[z,p] = y = EndOf(N|z, p]) + w(z, y) = StartOf (N|y, p])

The implications turned out to be much more efficient than using the FElement con-
straint so that the implications are used in the experiments.

We also tested the models without the constraints for pruning the search space (9)-
(10), (22)-(23), and (39)-(40), which led to increase in average runtime for the Flow,
Path, and Opt model roughly by 26 %, 37 %, and 20 %, respectively. For the Path
model, we also tried adding the constraints Next[z, p] = z < StartO f(Nz,p]) > UB,
which turned out to be counterproductive.

6.2 Problem Instances

The problem instances are simple four connected grid maps with unit-length edges. To
ensure interaction between agents, impassable walls are introduced in the grid graph.
These walls create two types of graphs - a grid that has an obstacle in the middle that
the agents have to go around, and a grid that has a bottleneck that the agents have
to squeeze through. To create different complexity of the instances we incrementally
increase the grid size from 5 by 5 to 9 by 9 as well as we vary the number of agents
from 2 to 9 for each size of the graph.

Different origin and destination positions are also included in the experiments.
Both can be either randomly scattered across the whole graph or grouped in one place.
This yields four different combinations of origin and destination positions. Each of the
instances described above was generated five times. Hence, we generated 1600 instances
in total.

6.3 The Results

The Figure 1 shows the overall comparison in the form of a cactus graph. It shows the
number of problems solved (x-axis) within a given time (y-axis). For simple instances,
the Flow model is the best one. Then the middle complexity instances are solved best
by the Path model, but the overall winner is the Opt model that can solve the largest
number of instances. This is an interesting behavior, in particular, that the Flow model
is better than the Path model for simpler and for more complex instances, but not for
the middle-complexity instances.

We compared the models also based on parameters of the instances. Recall, that
two types of worlds (maps) were generated - one with an obstacle to go around it
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Fig. 1 Dependence of the number of problems solved on time (logarithmic scale; time mea-
sured in milliseconds).

and one with a bottleneck that the agents have to squeeze through. Figure 2 shows
the comparison in the form a cactus graph. The Opt model is overall the best model
independently of the map. The bottleneck maps seem to favor the Flow model over
the Path though the trend for the obstacle maps seems similar and maybe if a larger
cutoff time is used, the behavior of models will be similar.
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0 7/, Path Path |

Fig. 2 Dependence of the number of problems solved on time for two types of maps (loga-
rithmic scale; time measured in milliseconds).

We also studied the behavior of models based on the size of instances. The size
can be measured by the size of the map or by the number of agents. Figure 3 shows
the comparison of models for different sizes of maps. It is clear that for small maps,
the Flow model works very well but as the size increases the Path model works better.
Again, the Opt model demonstrates the most stable behavior. Regarding the number
of agents, it seems that the behavior of models corresponds to the overall behavior and
the number of agents does not favor any of the models. Figure 4 shows the comparison
for selected numbers of agents.
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Fig. 3 Dependence of the number of problems solved on time for different sizes of maps
(logarithmic scale; time measured in milliseconds).
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Fig. 4 Dependence of the number of problems solved on time for different numbers of agents
(logarithmic scale; time measured in milliseconds).

7 Conclusions
In this paper, we proposed three scheduling models for multi-agent path finding prob-

lems. The major motivation was to exploit techniques developed for scheduling prob-
lems in a new area, where they have not been used so far. This should allow easier
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solving of more realistic problems with various resource and temporal constraints such
as non-uniform distances between the nodes and various capacities of nodes (and arcs).
The model with optional activities seems the most stable, in particular when the prob-
lems are becoming larger. There is an interesting behavior of the Flow model, which is
the best for small instances, then it is the worst model for middle-size instances, but
the runtime increase seems smaller for larger instances in comparison to other models.
This model is more influenced by the size of the graph than the other two models.
There is one significant restriction of the presented models - no agent (package)
can return to any node. A future research can study how to extend the models to allow
re-visits of the nodes, which is supported by existing solving approaches to MAPF.
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Mathematical Formulation for Minimizing Total Tardiness in a
Scheduling Problem with Parallel Machines

Francisco Regis Abreu Gomes » Geraldo Robson Mateus

Abstract This paper addresses the NP-hard parallel machine scheduling problem with
sequence and machine-dependent setup times for minimizing total tardiness. Mathematical
models for this problem often use a constant known as big-M on account of the disjunctive
constraints. This yields very weak lower bounds that make it difficult to obtain the optimal
solution, even for small-size instances. To address this problem, we propose a mathematical
formulation that does not use the big-M constant. To this end, we present an approach that uses
dummy jobs instead of the big-M constant. Additionally, an optimality condition method that
reduces the solution space of the problem is proposed. Experiments conducted on two instance
types produced computational proof of the superiority of the proposed model compared to
models based on Wagner’s (1959) and Manne’s (1960) formulations. The proposed model
produced 153 optimal solutions compared to 81 and 42 of Wagner’s and Manne’s models,
respectively, and it was up to three orders of magnitude faster in the 180 instances that were
tested.

1 Introduction

In today’s competitive business environment of manufacturing and services, efficient
scheduling is one of the most critical issues [1]. The parallel machine scheduling problem
(PMSP) is broadly applied in many manufacturing and service systems. Therefore, it has been
a subject of continuing interest for researchers and practitioners [2]. Many types of PMSPs
have been proposed in the literature. They can be classified into identical, uniform, and
unrelated parallel machine categories [3]. Of these types, the PMSP which includes the
machine and sequence-dependent setup times and total tardiness as criterion has received less
attention than other PMSPs [4]. However, with the adoption by companies of the just-in-time
philosophy, an increasing amount of research in the past two decades has involved tardiness
[5]. Nevertheless, tardiness is a difficult criterion with which to work, even in the single-
machine environment [6]. Applications of all PMSP types are common in many industries,
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including painting, plastic, textile, glass, semiconductor, chemical, and paper manufacturing

[7].

Exact mathematical programming approaches for scheduling problems use two distinct
types of formulations [8]: (1) formulations whereby the job sequence is represented by binary
variables and completion times are denoted by continuous variables; and (2) time-indexed
formulations, whereby the completion time of each job is represented by binary variables
indexed over a discrete time horizon [9]. The formulations of type (2) are known to yield tight
linear relaxations; however, they cannot be directly applied to many instances on account of
their pseudo-polynomially large number of variables. The formulations of type (1) are compact
in that they involve a polynomial number of variables and constraints. On the other hand, they
yield poor linear relaxations. This is notoriously due to the big-M constant used to linearize the
disjunctive constraints [10]. The formulations of type (2), on the other hand, do not use this
constant.

Avalos-Rosales et al. [11] proposed several mixed integer formulations of type (1) for a
PMSP to minimize the makespan. These formulations outperform the previously published
formulations in terms of the instance size and computational time for reaching optimal
solutions. Using these models, it is possible to solve instances up to 60 jobs and five machines
that are six times larger than was previously solved. In addition, they enable attainment of
optimal solutions for instances of the same size up to four orders of magnitude faster. This is
only possible because those authors proposed an additional constraint to calculate the
makespan that does not use the big-M constant. We emphasize that these formulations still use
this constant in the disjunctive constraints. Unfortunately, these formulations thus cannot be
used when the criterion is the minimization of total tardiness once the new linearization applies
only to computing the makespan. To the best of our knowledge, it does not exist a formulation
of type (1) for PMSPs with tardiness as a criterion that does not use the big-M.

Inspired by the performance achieved by the formulation of Avalos-Rosales et al. [11],
we propose a mathematical formulation for the problem under study that does not use the big-
M constant. To this end, we employ dummy jobs instead of the big-M constant to linearize the
computation of the total tardiness of the jobs. We additionally propose an optimality condition
that reduces the solution space of the problem. Computational results showed that the proposed
model obtained tight linear relaxations, more optimal solutions, and smaller runtimes when
compared to models from the literature. These are the main contributions of this paper.

The remainder of this paper is organized as follows. Section 2 reviews the solution
approaches for PMSPs. Section 3 presents two mathematical models from the literature and a
new mathematical formulation is proposed. Section 4 describes the computational experiments
comparing the mathematical formulations from the literature, and the proposed formulation,
and the results are reported. In Section 5, the conclusions are presented.

2 Literature review

This section reviews the previous studies on applying PMSPs. Our review is restricted to
PMSPs with the due date and setup times because these features are considered in this paper.
For more details, on parallel machine scheduling problems considering due date as a criterion,
and setup time, see [12], [13], and [14].

Most previous studies have been conducted on identical or uniform PMSPs only with
sequence-dependent setup times. Lee and Pinedo [15] suggest a three-phase heuristic using the
apparent tardiness cost with setups (ATCS) rule, a dispatching rule, and a simulated annealing
algorithm for minimizing the sum of the weighted tardiness. For minimizing the total tardiness,
Park et al. [16] improve the dispatching rule using look-ahead parameters calculated by a
neural network. Bilge et al. [17] propose a tabu search approach, whereby the candidate list
strategies, tabu classifications, tabu tenures, and intensification/diversification strategies are
investigated. Anghinolfi and Paolucci [18] propose a hybrid metaheuristic that incorporates the
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core features of simulated annealing, tabu search, and variable neighborhood search.
Armentano and de Franga Filho [19] propose GRASP (Greedy Randomized Adaptive Search
Procedure)-based search heuristics that incorporate adaptive memory principles.

For the unrelated PMSP with only sequence-dependent setup times, Kim et al. [20]
suggest a simulated annealing algorithm with various interchange and insertion methods for
minimizing the total tardiness. For minimizing the weighted number of tardy jobs, M’Hallah
and Bulfin [21] propose branch and bound algorithms, while Chen and Chen [22] propose
hybrid metaheuristics that integrate the tabu search and variable neighborhood descent
approach. In addition, Chen [23] presents several iterated hybrid metaheuristic algorithms,
while Zhu and Heady [24] propose a mixed integer programming model to minimize the sum
of earliness and tardiness penalties.

For the unrelated PMSP with the machine and sequence-dependent setup time, few
studies have been performed. For minimizing the total tardiness, Chen [25] considers the
problem with an additional strict due date constraint for some jobs. That author proposes a
simulated annealing algorithm that incorporates the feasibility improvement method. In
addition, Lin et al. [26] propose an iterated greedy algorithm and a simple dispatching rule,
which are respectively referred to as primary customers and the shortest completion time, to
generate the initial solution.

Meanwhile, Rocha et al. [27] propose a branch and bound algorithm and a GRASP
metaheuristic for minimizing the makespan added to the weighted tardiness. Paula et al. [28]
propose a non-delayed relax-and-cut algorithm based on a Lagrangian relaxation of a time-
indexed formulation to minimize the total weighted tardiness. For minimizing the total
earliness and tardiness penalties, Nogueira et al. [29] propose three different heuristics based
on the GRASP metaheuristic, and Zeidi and Hosseini [30] propose a genetic algorithm with a
simulated annealing method as a local search procedure to improve the solution quality.

3 Parallel machine scheduling problem for minimizing total tardiness
3.1 Problem description

The scheduling problem investigated in this study considers n independent jobs, J = {1, 2,
..., N}, on munrelated or uniform parallel machines, 1 = {1, 2, ..., m}. Each machine i € | is
ready at time zero and can process all jobs. Each job j € J is processed by exactly one of the
machines with processing times p; (i € 1), is available in time zero, and it has a due date d;. A
machine and sequence-dependent setup time, sy, is incurred between two different jobs, j = I.
The machine setup can be started and completed during the idle time, as commonly assumed in
the literature [31]. All the parameters are deterministic non-negative integers. A job sequence
is a subset of J processed by a machine in a sequence, in which each job is non-preemptively
processed only once. Each job in a sequence has a completion time, C;, and tardiness is defined
as T; = max{0, C; — d;j}. The aim is to find the set of job sequences that processes all jobs and
minimizes their total tardiness. In the standard three-field notation, this problem is denoted as
R or Q/s;ji/=T;. It is NP-hard because it is an extension of the NP-hard 1//3T; [32].

3.2 Wagner’s model

Rocha et al. [27] adapted for the parallel machine scheduling problem the models based
on sequence-position variables proposed by Wagner [33] and precedence variables proposed
by Manne [34], both of which were originally proposed for the job shop problem. In Wagner’s
model, aij, is one if job j is processed in machine i in the p-th position (and zero, otherwise),
Bijp is one if jobs j and | are processed by machine i at the p-th and (p + 1)-th positions,
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respectively, (and zero, otherwise), and t;, denotes the starting time in machine i in the p-th
position. In this model, the position amount p is equal to the number of jobs. The model itself
is the following:

minz T; (€Y

Jj€J
Subject to:
Z Z Aijp = 1, vj €] (2)
i€l pej
Za”pgl, Viel,pe] 3)
jeJ
Za’i]-pSZa’u(p_l), Vle{:pel:pzz (4)
jEJ €]
ﬁl}l(p—l)-l_l Zaij(p_1)+a’ilp, V],l,p E],]?':l,p =>2,i€el (5)
tip 2 tip-1y + Z Pij Xijp-1) T ZZ SijiBijip-1)» vielpe],p=2 (6)
j€J jej €]
1#]
T =ty +p; —(1—a;,)M—d, VjpeEJ i€l @)
tip =0, VpE] C)
a;j, € {0,1}, Vj,p€J, i€l 9
Bijip € {0,13, vi,LpeJ],j+Li€el (10)

The objective function (1) minimizes the total tardiness of the jobs. Constraints (2) ensure
that each job is assigned to only one machine and one position. Constraints (3) ensure that no
more than one job is assigned to each position of a machine. Constraints (4) ensure that if a job
is assigned to a position p, p > 2, another job is assigned to position p — 1 of the same machine.
Constraints (5) determine the sequence of jobs on the machines. Constraints (6) calculate the
start time of the positions on each machine. Constraints (7) calculate the tardiness of each job.
Finally, the constraints (8) to (10) define the conditions of non-negativity and integrality of the
variables.

3.3 Manne’s model

In the Manne’s model, a;j; is one if job j is processed in machine i (and zero, otherwise),
Biji is one if the job | is processed after (not necessarily immediately after) job j in machine i
(and zero, otherwise), and t; denotes the starting time of job j. The model itself is the
following:

minz T; (11)

J€J

Subject to:
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Day=1, vj€] (12)
i€l

C-aj—ag)M+ (1 —By))M+t;=t,+py+su, Vil€j#lLi€l (13)
(2—ay—ay)M + By;M +t, > t; + p;; + siji, Vi le],j#Li€l (14)
(= (tf + ZW“z;) —d;, vj €] (15)

i€l

tj>0, vje]J (16)
I; 20, vj€] (17)
a;; €{0,1}, vjieJ i€l (18)
Biji €{0,1}, vieJle],j#li€l (19)

The objective function (11) minimizes the total tardiness of the jobs. Constraints (12)
ensure that each job is processed by only one machine. Constraints (13) and (14) describe the
precedence relationship between the jobs, i.e., for each pair of jobs, (I, j) or j is processed after
I, or | is processed after j. Constraints (15) calculate the tardiness of each job. Finally,
constraints (16) to (19) define the non-negativity and integrality of the variables.

3.4 Positional model

The proposed model uses the same type of positional variable proposed by Wagner [33].
Hence, it was given the “positional model” name. As Wagner’s model, the number of positions
per machine is equal to the number of jobs of the problem. The big-M constant is used to
determine which of the available positions is occupied. In practice, only a portion of the
positions is occupied by jobs. In the positional model, the positions not occupied by jobs
(called “real jobs”) are now occupied by a job created exclusively for this purpose, called the
“dummy job.” Thus, all positions are occupied by real or dummy jobs.

The dummy job is represented by zero. The real jobs are allocated to only one position of
a machine. The dummy job can be allocated to no position of a machine or to no more than
one. The dummy job does not affect the objective function value of the problem; thus, its
parameters do, Pio, and Sip; must have values equals to zero, and parameters s;jo have large
values. Therefore, the dummy job is allocated in the first position, and the real jobs are
allocated after the dummy job (S, = {0, ji, j, ...}). In this case, the setup time that occurs is Si,
which is equal to zero. Consequently, it does not affect the value of the objective function. If
the dummy job is allocated between real jobs (S, = { ji,..., 0, .., j2, ...}), one of the setup times
that occurs is sjjo, which is a very large value. It is so large that it greatly increases the value of
the objective function. Thus, the solution process is induced to place the dummy job before the
real jobs and never between them.

The first innovation of the positional model in relation to the presented models is to not
use the big-M constant to linearize the disjunctive constraints (or precedence constraints).
Then, the model is originally linear and can therefore be quickly resolved [35]. The model has
the following variables: x;;, is one if job j is processed in machine i in the p-th position (and
zero, otherwise), zj, is one if jobs j and | are processed by machine i at the p-th and (p + 1)-th
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positions, respectively, (and zero, otherwise), C;, is the completion time in the p-th position in
machine i, and Ty, is tardiness in the p-th position in machine i.

The second innovation of the positional model is to use a number of positions per
machine (k) that is smaller than the total number of real jobs. The aim is to make the most
compac